

Learning Robotics
Using Python

Design, simulate, program, and prototype an
interactive autonomous mobile robot from scratch
with the help of Python, ROS, and Open-CV!

Lentin Joseph

BIRMINGHAM - MUMBAI

Learning Robotics Using Python

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1250515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-753-6

www.packtpub.com

Cover image by Jarek Blaminsky (milak6@wp.pl)

www.packtpub.com

Credits

Author
Lentin Joseph

Reviewers
Avkash Chauhan

Vladimir Iakovlev

Blagoj Petrushev

Marek Suppa

Commissioning Editor
Rebecca Youé

Acquisition Editor
Rebecca Youé

Content Development Editor
Athira Laji

Technical Editors
Ankur Ghiye

Manali Gonsalves

Copy Editors
Pranjali Chury

Relin Hedly

Merilyn Pereira

Adithi Shetty

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Lentin Joseph is an electronics engineer, robotics enthusiast, machine vision
expert, embedded programmer, and the founder and CEO of Qbotics Labs
(http://www.qboticslabs.com) in India. He got his bachelor's degree in electronics
and communication engineering at the Federal Institute of Science and Technology
(FISAT), Kerala. In his final year engineering project, he created a social robot, which
can interact with people. The project was a huge success and got mentioned in visual
and print media. The main feature of this robot was that it could communicate with
people and reply intelligently. It also has some image-processing capabilities, such
as face, motion, and color detection. The entire project was implemented using the
Python programming language. His interest in robotics, image processing, and
Python began this project.

After graduation, he worked at a start-up company based on robotics and image
processing for 3 years. In the meantime, he learned famous robotic software
platforms—such as Robot Operating system (ROS), V-REP, and Actin (a robotic
simulation tool)—and image processing libraries, such as OpenCV, OpenNI,
and PCL. He also knows about robot 3D designing, embedded programming on
Arduino, and Stellaris Launchpad.

After 3 years of work experience, he started a new company called Qbotics Labs,
which is mainly focused on research to build great products in domains such
as wearable technology, robotics, machine vision, green technology, and online
education. He maintains a personal website (http://www.lentinjoseph.com) and
a technology blog called technolabsz (http://www.technolabsz.com). He publishes
his works on his tech blog. He was a speaker at PyCon2013 India, and he spoke on
the topic of learning robotics using Python.

I would like to dedicate this book to my parents because they gave
me the inspiration to write it. I would also like to convey my regards
to my friends who helped and inspired me to write this book.

I would like to thank Marek Suppa for his valuable contribution in
writing Chapter 1, Introduction to Robotics, in addition to reviewing
this book.

http://www.qboticslabs.com
http://www.lentinjoseph.com
http://www.technolabsz.com

About the Reviewers

Avkash Chauhan is currently leading a team of engineers at a start-up based in San
Francisco, where his team is building a big data monitoring platform using machine
learning and new age methods to improve business continuity and gain maximum
advantage from the platform itself. He is the founder and principal of Big Data
Perspective, with a vision to make the Hadoop platform accessible to mainstream
enterprises by simplifying its adoption, customization, management, and support.
Before Big Data Perspective, he worked at Platfora Inc., building big data analytics
software running natively on Hadoop. Previously, he worked for 8 years at Microsoft,
building cloud and big data products and providing assistance to enterprise partners
worldwide. Avkash has over 15 years of software development experience in cloud
and big data disciplines. He is a programmer at heart in full-stack discipline and has
the business acumen to work with enterprises, meeting their needs. He is passionate
about technology and enjoys sharing his knowledge with others through various social
media. He has also written a few books on big data discipline and is very active in the
tech social space. He is an accomplished author, blogger, technical speaker, and he
loves the outdoors.

Vladimir Iakovlev is a software developer. Most of the time, he develops
web applications using Python, Clojure, and JavaScript. He's the owner of a
few semi-popular open source projects. He was a speaker at a few Python-related
conferences.

In his free time, Vladimir likes to play with electronic devices, such as Arduino
and PyBoard, and image-processing devices, such as Leap Motion. He has tried
to build some robots. He has already built a robotic arm.

Currently, Vladimir works at Upwork, where he develops web applications, mostly
with Python.

Blagoj Petrushev is a software engineer and consultant based in Skopje,
Macedonia. His work revolves mainly around backends, datastores, and network
applications. Among his interests are machine learning, NLP, data analysis,
modeling and databases, and distributed programming.

Marek Suppa has been playing with (kind of) smart machines for the past few
years, which are pretentiously called robots in some parts of the world. Right now,
he leads a robotic football team, building tools to help others start with robots and
setting off on a new venture to see how far the current technology will let us move
toward the goal of creating a robot as it was first defined.

I would like to thank everyone who supported the creation of this
book, whoever and wherever they might be.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 ix
Chapter 1: Introduction to Robotics	 1

What is a robot?	 2
History of the term robot	 2
Modern definition of a robot	 4

Where do robots come from?	 7
What can we find in a robot?	 11

The physical body	 12
Sensors	 12
Effectors	 12
Controllers	 13

How do we build a robot?	 14
Reactive control	 14
Hierarchical (deliberative) control	 14
Hybrid control	 15

Summary	 16
Chapter 2: Mechanical Design of a Service Robot	 17

Requirements of a service robot	 18
The Robot drive mechanism	 18

Selection of motors and wheels	 19
Calculation of RPM of motors	 19
Calculation of motor torque	 20

The design summary	 20
Robot chassis design	 21

Table of Contents

[ii]

Installing LibreCAD, Blender, and MeshLab	 22
Installing LibreCAD	 23
Installing Blender	 23
Installing MeshLab	 23

Creating a 2D CAD drawing of the robot using LibreCAD	 24
The base plate design	 27
Base plate pole design	 28
Wheel, motor, and motor clamp design	 29
Caster wheel design	 30
Middle plate design	 31
Top plate design	 32

Working with a 3D model of the robot using Blender	 32
Python scripting in Blender	 33
Introduction to Blender Python APIs	 34
Python script of the robot model	 36

Questions	 41
Summary	 42

Chapter 3: Working with Robot Simulation Using
ROS and Gazebo	 43

Understanding robotic simulation	 43
Mathematical modeling of the robot	 46

Introduction to the differential steering system and robot kinematics	 47
Explaining of the forward kinematics equation	 48
Inverse kinematics	 53

Introduction to ROS and Gazebo	 54
ROS Concepts	 55

Installing ROS Indigo on Ubuntu 14.04.2	 58
Introducing catkin	 61
Creating an ROS package	 61
Hello_world_publisher.py	 62
Hello_world_subscriber.py	 64
Introducing Gazebo	 66
Installing Gazebo	 67
Testing Gazebo with the ROS interface	 68
Installing TurtleBot Robot packages on ROS Indigo	 69
Installing TurtleBot ROS packages using the apt package manager in Ubuntu	 72
Simulating TurtleBot using Gazebo and ROS	 72
Creating the Gazebo model from TurtleBot packages	 74
What is a robot model, URDF, xacro, and robot state publisher?	 76
Creating a ChefBot description ROS package	 77

Simulating ChefBot and TurtleBot in a hotel environment	 86
Questions	 91
Summary	 91

Table of Contents

[iii]

Chapter 4: Designing ChefBot Hardware	 93
Specifications of the ChefBot hardware	 94
Block diagram of the robot	 94

Motor and encoder	 95
Selecting motors, encoders, and wheels for the robot	 96

Motor driver	 97
Selecting a motor driver/controller	 99

Embedded controller board	 101
Ultrasonic sensors	 102

Selecting the ultrasonic sensor	 103
Inertial Measurement Unit	 104
Kinect	 105
Central Processing Unit	 106
Speakers/ mic	 108
Power supply/battery	 108

Working of the ChefBot hardware	 110
Questions	 111
Summary	 112

Chapter 5: Working with Robotic Actuators and Wheel Encoders	 113
Interfacing DC geared motor with Tiva C LaunchPad	 114

Differential wheeled robot	 116
Installing the Energia IDE	 118
Interfacing code	 121

Interfacing quadrature encoder with Tiva C Launchpad	 124
Processing encoder data	 125
Quadrature encoder interfacing code	 128

Working with Dynamixel actuators	 132
Questions	 136
Summary	 136

Chapter 6: Working with Robotic Sensors	 137
Working with ultrasonic distance sensors	 137

Interfacing HC-SR04 to Tiva C LaunchPad	 138
Working of HC-SR04	 139
Interfacing code of Tiva C LaunchPad	 140
Interfacing Tiva C LaunchPad with Python	 142

Working with the IR proximity sensor	 144
Working with Inertial Measurement Unit	 147

Inertial Navigation	 147
Interfacing MPU 6050 with Tiva C LaunchPad	 149

Setting up the MPU 6050 library in Energia	 150
Interfacing code of Energia	 152

Table of Contents

[iv]

Interfacing MPU 6050 to Launchpad with the DMP
support using Energia	 155
Questions	 160
Summary	 161

Chapter 7: Programming Vision Sensors Using
Python and ROS	 163

List of robotic vision sensors and image processing libraries	 163
Introduction to OpenCV, OpenNI, and PCL	 168

What is OpenCV?	 168
Installation of OpenCV from source code in Ubuntu 14.04.2	 169
Reading and displaying an image using the Python-OpenCV interface	 170
Capturing from web camera	 171

What is OpenNI	 173
Installing OpenNI in Ubuntu 14.04.2	 174

What is PCL?	 174
Programming Kinect with Python using ROS, OpenCV, and OpenNI	 175

How to launch OpenNI driver	 175
The ROS interface of OpenCV	 176

Creating ROS package with OpenCV support	 176
Displaying Kinect images using Python, ROS, and cv_bridge	 177

Working with Point Clouds using Kinect, ROS, OpenNI, and PCL	 181
Opening device and Point Cloud generation	 181

Conversion of Point Cloud to laser scan data	 183
Working with SLAM using ROS and Kinect	 184
Questions	 185
Summary	 185

Chapter 8: Working with Speech Recognition and
Synthesis Using Python and ROS	 187

Understanding speech recognition	 188
Block diagram of a speech recognition system	 188
Speech recognition libraries	 189

CMU Sphinx/Pocket Sphinx	 189
Julius	 190

Windows Speech SDK	 190
Speech synthesis	 190
Speech synthesis libraries	 191

eSpeak	 191
Festival	 191

Table of Contents

[v]

Working with speech recognition and synthesis in
Ubuntu 14.04.2 using Python	 192

Setting up Pocket Sphinx and its Python binding in Ubuntu 14.04.2	 192
Working with Pocket Sphinx Python binding in Ubuntu 14.04.2	 193
Output	 194

Real-time speech recognition using Pocket Sphinx,
GStreamer, and Python in Ubuntu 14.04.2	 195
Speech recognition using Julius and Python in Ubuntu 14.04.2	 198

Installation of Julius speech recognizer and Python module	 198
Python-Julius client code	 199
Improving speech recognition accuracy in Pocket Sphinx and Julius	 201
Setting up eSpeak and Festival in Ubuntu 14.04.2	 201

Working with speech recognition and synthesis in
Windows using Python	 202

Installation of the Speech SDK	 203
Working with Speech recognition in ROS Indigo and Python	 204

Installation of the pocketsphinx package in ROS Indigo	 204
Working with speech synthesis in ROS Indigo and Python	 205
Questions	 207
Summary	 207

Chapter 9: Applying Artificial Intelligence to
ChefBot Using Python	 209

Block diagram of the communication system in ChefBot	 210
Introduction to AIML	 211

Introduction to AIML tags	 211
Introduction to PyAIML	 214

Installing PyAIML on Ubuntu 14.04.2	 215
Installing PyAIML from source code	 215

Working with AIML and Python	 215
Loading a single AIML file from the command-line argument	 216

Working with A.L.I.C.E. AIML files	 218
Loading AIML files into memory	 218
Loading AIML files and saving them in brain files	 219
Loading AIML and brain files using the Bootstrap method	 220

Integrating PyAIML into ROS	 221
aiml_server.py	 221
aiml_client.py	 223
aiml_tts_client.py	 223

Table of Contents

[vi]

aiml_speech_recog_client.py	 224
start_chat.launch	 225
start_tts_chat.launch	 226
start_speech_chat.launch	 226

Questions	 228
Summary	 228

Chapter 10: Integration of ChefBot Hardware and
Interfacing it into ROS, Using Python	 229

Building ChefBot hardware	 230
Configuring ChefBot PC and setting ChefBot ROS packages	 235
Interfacing ChefBot sensors with Tiva C LaunchPad	 236

Embedded code for ChefBot	 237
Writing a ROS Python driver for ChefBot	 239
Understanding ChefBot ROS launch files	 245
Working with ChefBot Python nodes and launch files	 246

Working with SLAM on ROS to build the map of the room	 252
Working with ROS localization and navigation	 254

Questions	 255
Summary	 256

Chapter 11: Designing a GUI for a Robot Using Qt and Python	 257
Installing Qt on Ubuntu 14.04.2 LTS	 258
Working with Python bindings of Qt	 258

PyQt	 258
Installing PyQt on Ubuntu 14.04.2 LTS	 259

PySide	 259
Installing PySide on Ubuntu 14.04.2 LTS	 259

Working with PyQt and PySide	 259
Introducing Qt Designer	 260
Qt signals and slots	 261
Converting a UI file into Python code	 263
Adding a slot definition to PyQt code	 264
Up and running of Hello World GUI application	 266

Working with ChefBot's control GUI	 267
Installing and working with rqt in Ubuntu 14.04.2 LTS	 273

Questions	 275
Summary	 276

Table of Contents

[vii]

Chapter 12: The Calibration and Testing of ChefBot	 277
The Calibration of Xbox Kinect using ROS	 277

Calibrating the Kinect RGB camera	 278
Calibrating the Kinect IR camera	 282

Wheel odometry calibration	 284
Error analysis of wheel odometry	 285
Error correction	 286

Calibrating the MPU 6050	 287
Testing of the robot using GUI	 287

Pros and cons of the ROS navigation	 291
Questions	 291
Summary	 291

Index	 293

[ix]

Preface
Learning Robotics with Python contains twelve chapters that mainly aims at how
to build an autonomous mobile robot from scratch and how to program it using
Python. The robot mentioned in this book is a service robot, which can be used to
serve food at home, hotels, and restaurants. From the beginning to end, this book
discusses the step-by-step procedure on how to build this robot. The book starts with
the basic concepts of robotics and then moves on to the 3D modeling and simulation
of the robot. After the successful simulation of the robot, it discusses the hardware
components required to build the robot prototype in order to complete the robot
navigation.

The software part of this robot is mainly implemented using the Python
programming language and software frameworks, such as Robot Operating System
(ROS), Open-CV, and so on. You will understand the application of Python from the
aspects of designing the robot to the robot’s user interface. The Gazebo simulator
is used to simulate the robot and machine vision libraries, such as Open-CV and
OpenNI. PCL is used to process the 2D and 3D image data of the robot. Each chapter
is presented with an adequate theory to understand the application aspect. The book
is reviewed by experts in this field who are passionate about robotics.

What this book covers
Chapter 1, Introduction to Robotics, contains basic concepts and terminologies of
robotics. This chapter is a must for beginners who are just starting with robotics.

Chapter 2, Mechanical Design of a Service Robot, discusses the 2D and 3D CAD
designing aspect of the robot using LibreCAD and Blender (free software).
This chapter also demonstrates how to use Blender Python APIs in order to
build the 3D model.

Chapter 3, Working with Robot Simulation Using ROS and Gazebo, takes you through the
simulation of the service robot using Gazebo and ROS.

Preface

[x]

Chapter 4, Designing ChefBot Hardware, explains the hardware designing of the robot,
including block diagram and hardware components required to build ChefBot.

Chapter 5, Working with Robotic Actuators and Wheel Encoders, covers interfacing of
robotic actuators and wheel encoders using Tiva C LaunchPad. It also mentions
high-end smart actuators like dynamixel.

Chapter 6, Working with Robotic Sensors, discusses interfacing of ultrasonic distance
sensors, IR proximity sensors, and IMU using Tiva C LaunchPad.

Chapter 7, Programming Vision Sensors Using Python and ROS, talks about the
introduction to Open-CV, OpenNI, and PCL libraries and interfacing these to ROS
and programming using Python.

Chapter 8, Working with Speech Recognition and Synthesis Using Python and ROS,
discusses speech recognition and synthesis using various libraries and interfacing it
to ROS programming using Python.

Chapter 9, Applying Artificial Intelligence to ChefBot Using Python, covers tutorials to
build a ChatterBot. This can be used to make the robot interactive.

Chapter 10, Integration of ChefBot Hardware and Interfacing it into ROS, Using Python,
explores tutorials to integrate the complete hardware and essential software section.
It mainly discusses autonomous navigation of the service robot and how to program
it using ROS and Python.

Chapter 11, Designing a GUI for a Robot Using Qt and Python, covers tutorials on how
to build a GUI for the user who operates the robot in a typical restaurant. The GUI is
built using Qt and the PyQt Python wrapper.

Chapter 12, The Calibration and Testing of ChefBot, explores tutorials on how to calibrate
and test the robot for the final run.

What you need for this book
The book is all about how to build a robot. To start with this book, you should have
some hardware. The robot can be built from scratch, or you can buy a differential-
drive configuration robot with an encoder feedback. You should buy a controller
board, such as Texas Instruments Launchpad, for embedded processing. You should
have at least a laptop/net book for the entire robot process. In this book, we will
use Intel NUC for robot processing. It’s very compact in size and delivers high
performance. For the 3D vision, you should have 3D sensors, such as laser scanner,
Kinect, and Asus Xtion Pro.

Preface

[xi]

In the software section, you should have a good understanding on how to work with
GNU/Linux commands. You should also have a good knowledge of Python. You
should install Ubuntu 14.04.2 LTS to work with the examples. If you have knowledge
about ROS, OpenCV, OpenNI, and PCL, it will be a great add-on. You have to install
ROS Indigo to test these examples.

Who this book is for
Learning Robotics with Python is a good companion for entrepreneurs who want
to explore the service robotics domain, professionals who want to implement more
features to their robots, researchers who want to explore more about robotics, and
hobbyist or students who want to learn robotics. The book follows a step-by-step
guide that can be easily understood by anyone.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
“ The first procedure is to create a world file and save it with the .world file
extension.”

A block of code is set as follows:

<xacro:include filename=”$(find
 chefbot_description)/urdf/chefbot_gazebo.urdf.xacro”/>
<xacro:include filename=”$(find
 chefbot_description)/urdf/chefbot_properties.urdf.xacro”/>

Any command-line input or output is written as follows:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

Preface

[xii]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “ we can
command the robot to navigate to some position on the map using the 2D Nav
Goal button”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/7536OS_ImageBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/7536OS_ImageBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/7536OS_ImageBundle.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Introduction to Robotics
If you read an introductory chapter in any technical book, you may have noticed
that it pretty much always follows the same structure. It begins by describing how
awesome the topic is, what a good decision it is to start reading the book, and how
you should keep on reading because there are many exciting things awaiting you in
its further chapters.

This chapter is no such chapter. It starts with the following quote:

Robotics is an art.

Although, such a strong statement does probably deserve some explanation, we
believe that after you finish reading this book (and building your own robots!), no
further explanation will be needed.

So if robotics is an art, how does one learn it? To put it differently, what are the
differences between learning to play a musical instrument, learning to paint, learning
to write, and learning robotics? We believe that there are not too many of them. Just
as musicians need to play on their instruments, painters need to produce paintings,
and writers need to write their texts, roboticists (the term we use to describe people
who build robotics) need to build their robots. Just as musicians, painters, and
writers need to learn the jargon used in their trades, roboticists need to familiarize
themselves with a few basic terms that they might run into while reading tutorials,
researching scientific literature, and talking to other robotics enthusiasts. Also, just as
any artist needs to know at least a little bit about the history of their respective art, so
does any good roboticist need to know a thing or two about the history of robotics.
That's why in this chapter, we will cover:

•	 What is a robot?
•	 Where do robots come from?
•	 What can we find in a robot?
•	 How do we build robots?

Introduction to Robotics

[2]

What is a robot?
Rather than defining what a robot is right away, let's pause for a moment and discuss
whether we need to answer a question like this after all. Everybody knows that a
robot is some sort of a machine that can move around and depending on what movie
you saw or which book you read, it can either help humans in their day-to-day life or
mean the end of humanity.

It's clear that there is some controversy and lots of misunderstandings about robots
and their role in the past, present, and the future. In order to better understand the
situation, let's first examine closely the term "robot" itself. Then, we will try to define
it a bit more formally to prevent any misunderstanding or controversy.

History of the term robot
The term "robot" was used for the first time by Karel Čapek, a Czech writer in
his play Rossum's Universal Robots (R.U.R) that he wrote in 1920, to denote an
artificial human made out of synthetic organic matter. These robots (roboti in Czech)
were made in factories and their purpose was to replace human workers. While
they were very efficient and executed orders they were given perfectly, they lacked
any emotion. It seemed that humans would not need to work at all because robots
seemed to be happy to work for them. This changed after a while and a robot revolt
resulted in extinction of the human race.

R.U.R is quite dark and disturbing, but it does not leave the future hopeless.
It was considered quite a success back in the day and we certainly do recommend
you to read it. As its copyright had already expired in many countries at the time of
writing this book, it should not be a problem to find a version online, which is in the
public domain.

"When he (Young Rossum) took a look at human anatomy he saw immediately
that it was too complex and that a good engineer could simplify it. So he undertook
to redesign anatomy, experimenting with what would lend itself to omission or
simplification. Robots have a phenomenal memory. If you were to read them a
twenty-volume encyclopedia they could repeat the contents in order, but they never
think up anything original. They'd make fine university professors."

– Karel Capek, R.U.R. (Rossum's Universal Robots), 1920

Chapter 1

[3]

While many attribute the term robot to Karel Čapek as he wrote the play in which it
appeared for the first time, there are sources suggesting that it was actually Čapek's
brother Josef who came up with the term (it seems that there was an article in Czech
daily print written by Karel Čapek himself, in which he wants to set the record
straight by telling this story). Karel wanted to use the term laboři (from Latin labor,
work), but he did not like it. It seemed too artificial to him, so he asked his brother
for advice. Josef suggested roboti and that was what Karel used in the end.

Now that we know when the term robot was used for the first time and who actually
created it, let's find out where does it come from. The explanation that many use is that
it comes from the Czech words robota and robotník, which literally means "work" and
"worker" respectively. However, the word robota also means "work" or "serf labor" in
Slovak. Also, we should take into account that some sources suggest that by the time
Karel was writing R.U.R, he and his brother often visited his father in a small Slovak
spa town called Trenčianske Teplice. Therefore, it might very well be that the term
robot was inspired by the usage of the word "robota" in Slovak language, which is
coincidentally, the native language of one of the authors of this book.

Introduction to Robotics

[4]

Whether the term robot comes from Czech or Slovak, the word robota might be a
matter of national pride, but it does not concern us too much. In both cases, the literal
meaning is "work", "labor", or "hard work" and it was the purpose of the Čapek's
robots. However, robots have evolved dramatically over the past hundred years. To
say that they are all about doing hard work would probably be an understatement.

So, let's try to define the notion of a robot as we perceive it today.

Modern definition of a robot
When we try to find a precise definition of some term, our first stop is usually some
sort of encyclopedia or a dictionary. Let's try to do this for the term robot.

Our first stop will be Encyclopedia Britannica. Its definition of a robot is as follows:

"Any automatically operated machine that replaces human effort, though it
might not resemble human beings in appearance or preform functions in a
humanlike manner."

This is quite a nice definition, but there are quite a few problems with it.

First of all, it's a bit too broad. By this definition, a washing machine should also be
considered a robot. It does operate automatically (well, most of them do), it does
replace human effort (although not by changing the same tasks a human would do),
and it certainly does not resemble a human.

Secondly, it's quite difficult to imagine what a robot actually is after reading this
definition. With such a broad definition, there are way too many things that can be
considered a robot and this definition does not provide us with any specific features.

It turns out that while Encyclopedia Britannica's definition of a robot does not fit our
needs well enough, it's actually one of the best ones that one can find. For example,
The Free Dictionary defines a robot as "A mechanical device that sometimes resembles a
human and is capable of performing a variety of often complex human tasks on command or
by being programmed in advance." This is even worse than what we had and it seems
that a washing machine should still be considered a robot.

The inherent problem with these definitions is that they try to capture vast amount
of machines that we call robots these days. The result is that it's very difficult, if not
impossible, to come up with a definition that will be comprehensive enough and
not include a washing machine at the same time. John Engelberger, founder of the
world's first robotics company and industrial robotics (as we know it today) once
famously said, "I can't define a robot, but I know one when I see one."

Chapter 1

[5]

So, is it even possible to define a robot? Maybe not in general. However, if we limit
ourselves just to the scope of this book, there may be a definition that will suit our
needs well enough. In her very nice introductory book on the subject of robotics
called The Robotics Primer (which we also highly recommend), Maja J. Mataric uses
the following definition:

"A robot is an autonomous system which exists in the physical world, can sense its
environment, and can act on it to achieve some goals."

At first sight, it might not seem like a vast improvement over what we have so far,
but let's dissect it part by part to see whether it meets our needs.

The first part says, "A robot is an autonomous system". By autonomous, we mean
that a robot makes decisions on its own—it's not controlled by a human. This
already seems to be an improvement as it weeds out any machine that's controlled
by someone (such as our famous washing machine). Robots that we will talk about
throughout this book may sometimes have some sort of a remote function, which
allows a human to control it remotely, but this functionality is usually built-in as
sort of a safety measure so that if something goes wrong and the robot's autonomous
systems fails to behave as we would expect them to, it's still possible to get the robot
to safety and diagnose its problems afterwards. However, the main goal still stays
the same, that is, to build robots that can take some direction from humans and are
able to act and function on their own.

However, just being an autonomous system will certainly not be enough for a robot
in this book. For instance, we can find many computer programs that we can call
autonomous systems (they are not controlled by an individual and make decisions
on their own) and yet we do not consider them to be robots.

To get around this obstacle, we need the other part of the sentence that says, "which
exists in the physical world".

Given the recent advances in the fields of artificial intelligence and machine
learning, there is no shortage of computer systems that act on their own and
perform some work for us, which is what robots should be for. As a quite notorious
example, let's consider spam filters. These are computer programs that read every
e-mail that reaches your e-mail address and decides whether you may want to read
it (and that the e-mail is indeed legitimate) or whether it's yet another example of an
unwanted e-mail.

Introduction to Robotics

[6]

There is no doubt that such a system is helpful (if you disagree, try to read some
of the e-mails in your Spam folder—I am pretty sure it will be a boring read). It's
estimated that over 60 percent of all e-mail traffic in 2014 can be attributed to spam
e-mails. Being able to automatically filter them can save us a lot of reading time.
Also, as there is a no human involved in the decision process (although, we can help
it by marking an e-mail as spam), we can call such a system as autonomous. Still,
we will not call it a true robot. Rather, we call them "software robots" or just "bots"
(the fact that their name is shorter may come from the fact that they are short of the
physical parts of true robots).

While software robots are definitely an interesting group on its own, it's the physical
world in which robots operate that makes the process of creating them so exciting
and difficult at the same time. When creating a software robot, you can count on the
fact that the environment it will run in (usually the operating system) will be quite
stable (as in, not too many things may change unexpectedly). However, when you
are creating a real robot, you can never be sure.

This is why a real robot needs to know what is happening in the environment in
which it operates. Also, this is why the next part of the definition says, "can sense
its environment".

Sensing what is happening around a real robot is arguably its most important
feature. To sense their surrounding environments, robots usually have sensors.
These are devices that measure physical characteristics of the environment and
provide this information back to the robot so that it can, for instance, react to sudden
changes of temperature, humidity, or pressure. This is quite a big difference from
software robots. While they just get the information they need in order to operate
somewhat magically, real robots need to have a subsystem or subsystems that take
care of obtaining this information. If we look at the differences between robots and
humans, we will not find many (in our very high-level view, of course). We can think
of sensoring subsystems as artificial replacements for human organs that provide this
sort of information to the brain.

One important consequence of this definition is that anything that does not sense
its environment cannot be called a robot. This includes any devices that just "drive
blind" or move in a random fashion because they do not have any information from
the environment to base their behavior on.

Any roboticist will tell you that robots are very exciting machines. Many will
also argue that what makes them so exciting is actually their ability to interact
with the outside world (which is to move or otherwise change the environment
they are in). Without this, they are just another static machine that might be useful,
but rather unexciting.

Chapter 1

[7]

Our definition of a robot reflects this in its last part when it says, "can act on it to
achieve some goals".

Acting on the environment might sound like a very complex task for a robot, but in
this case, it just means changing the world in some (even very slight) way. We call
these parts of robots that perform this as effectors. If we look at our robot vs human
comparison, effectors are the artificial equivalents of hands, legs, and other body
parts that allow it to move. Effectors make use of some lower-level systems such
as motors or muscles that actually carry out the movement. We call them actuators.
Although, the artificial ones may seem to function similar to the biological ones, a
closer look will reveal that they are actually quite different.

You may have noticed that this part is not only about acting on the robot's
environment, but also about achieving some goals. While many hobby roboticists
build robots just for the fun of it, most robots are built in order to carry out (or, should
we rather say, to help with) some tasks, such as moving heavy parts in a factory or
locating victims in areas affected by natural disasters.

As we said before, a system or a machine that behaves randomly and does not use
information from its environment cannot really be considered a robot. However,
how can it use these information somehow? The easiest thing to do is to do
something useful, which we can rephrase as trying to reach some goal that we
consider useful, which in turn brings us back to our definition. A goal of a robot does
not necessarily need to be something as complex and ambitious as "hard labor for
human". It can easily be something simple, such as "do not bump into obstacles" or
"turn the light switch on".

Now, as we have at least a slight idea of what a robot is, we can move on to briefly
discuss where robots come from, in other words, the history of robotics.

Where do robots come from?
As the title suggests, this part of the chapter should be about the history of robots.
We already know a few quite important facts, such as the term robot was coined by
a Czech author Karel Čapek in 1920. As it turns out, there are many more interesting
events that happened over the years, other than this one. In order to keep things
organized, let's start from the beginning.

It's quite difficult to pinpoint a precise date in history, which we can mark as the
date of birth of the first robot. For one, we have established quite a restrictive
definition of a robot previously; thus, we will have to wait until the 20th century to
actually see a robot in the proper sense of the word. Until then, let's at least discuss
the honorable mentions.

Introduction to Robotics

[8]

The first one that comes close to a robot is a mechanical bird called "The Pigeon".
This was postulated by a Greek mathematician Archytas of Tarentum in the 4th
century BC and was supposed to be propelled by steam. It cannot not be considered
a robot by our definition (not being able to sense its environment already disqualifies
it), but it comes pretty close for its age. Over the following centuries, there were
many attempts to create automatic machines, such as clocks measuring time
using the flow of water, life-sized mechanical figures, or even first programmable
humanoid robots (it was actually a boat with four automatic musicians on it). The
problem with all these is that they are very disputable as there is very little (or none)
historically trustworthy information available about these machines.

It would have stayed like this for quite some time if it was not for Leonardo
Da Vinci's notebooks that were rediscovered in 1950s. They contain a complete
drawing of a 1945 humanoid (a fancy word for a mechanical device that resemble
humans), which looks like an armored knight. It seems that it was designed so that
it could sit up, wave its arms, move its head, and most importantly, amuse royalty.
In the 18th century, following the amusement line, Jacques de Vaucanson created
three automata: a flute player that could play twelve songs, a tambourine player,
and the most famous one, "The Digesting Duck". This duck was capable of moving,
quacking, flapping wings, or even eating and digesting food (not in a way you
will probably think—it just released matter stored in a hidden compartment).
It was an example of "moving anatomy"—modeling human or animal anatomy using
mechanics.

Our list will not be complete if we omitted these robot-like devices that came
about in the following century. Many of them were radio-controlled, such as Nikola
Tesla's boat, which he showcased at Madison Square Garden in New York. You
could command it to go forward, stop, turn left or right, turn its lights on or off, and
even submerge. All of this did not seem too impressive at that time because the press
reports attributed it to "mind control".

At this point, we have once again reached the time when the term robot was used for
the first time. As we said many times before, it was in 1920 when Karel Čapek used it
in his play, R.U.R. Two decades later, another very important term was coined. Issac
Asimov used the term robotics for the first time in his story "Runaround" in 1942.
Asimov wrote many other stories about robots and is considered to be a prominent
sci-fi author of his time.

Chapter 1

[9]

However, in the world of robotics, he is known for his three laws of robotics:

•	 First law: A robot may not injure a human being or through inaction allow a
human being to come to harm.

•	 Second Law: A robot must obey the orders given to it by human beings,
except where such orders would conflict with the first law.

•	 Third law: A robot must protect its own existence, as long as such protection
does not conflict with the first or second law.

After a while, he added a zeroth law:

•	 Zeroth law: A robot may not harm humanity or by inaction allow humanity
to come to harm.

These laws somehow reflect the feelings people had about machines they called
robots at that time. Seeing enslavement by some sort of intelligent machine as a
real possibility, these laws were supposed to be some sort of guiding principles one
should at least keep in mind, if not directly follow, when designing a new intelligent
machine. Also, while many were afraid of the robot apocalypse, time has shown that
it's still yet to come. In order for it to take place, machines will need to get some sort
of intelligence, some ability to think, and act based on their thoughts. Also, while we
can see that over the course of history, the mechanical side of robots went through
some development, the intelligence simply was not there yet.

This was part of the reason why in the summer of 1956, a group of very wise
gentlemen (which included Marvin Minsky, John McCarthy, Herbert Simon, and
Allan Newell) were later called to be the founding fathers of the newly founded field
of Artificial Intelligence. It was at this very event where they got together to discuss
creating intelligence in machines (thus, the term artificial intelligence).

Introduction to Robotics

[10]

Although, their goals were very ambitious (some sources even mention that their
idea was to build this whole machine intelligence during that summer), it took quite
a while until some interesting results could be presented.

One such example is Shakey, a robot built by the Stanford Research Institute
(SRI) in 1966. It was the first robot (in our modern sense of the word) capable to
reason its own actions. The robots built before this usually had all the actions they
could execute preprogrammed. On the other hand, Shakey was able to analyze
a more complex command and split it into smaller problems on his own. The
following image of Shakey is taken from https://en.wikipedia.org/wiki/
File:ShakeyLivesHere.jpg:

Shakey, resting in the Computer History Museum in Mountain View, California

His hardware was quite advanced too. He had collision detectors, sonar range
finders, and a television camera. He operated in a small closed environment of
rooms, which were usually filled with obstacles of many kinds. In order to navigate
around these obstacles, it was necessary to find a way around these obstacles while
not bumping into something. Shakey did it in a very straightforward way.

https://en.wikipedia.org/wiki/File:ShakeyLivesHere.jpg
https://en.wikipedia.org/wiki/File:ShakeyLivesHere.jpg

Chapter 1

[11]

At first, he carefully planned his moves around these obstacles and slowly
(the technology was not as advanced back then) tried to move around them.
Of course, getting from a stable position to movement wouldn't be possible without
some shakey moves. The problem was that Shakey's movements were mostly of this
shakey nature, so he could not be called anything other than Shakey.

The lessons learned by the researchers who were trying to teach Shakey how
to navigate in his environment turned out to be very important. It comes as no
surprise that one of the results of the research on Shakey is the A* search algorithm
(an algorithm that can very efficiently find the best path between two goals). This is
considered to be one of the most fundamental building blocks not only in the field of
robotics or artificial intelligence, but also in the field of computer science as a whole.

Our discussion on the history of robotics can go on and on for a very long time.
Although one can definitely write a book on this topic (as it's a very interesting one),
it's not this book; we shall try to get back to the question we tried to answer, which
was: where do robots come from?

In a nutshell, robots evolved from the very basic mechanical automation through
remotely-controlled objects to devices or systems that can act (or even adapt) on
their own in order to achieve some goal. If this sounds way too complicated, do not
worry. The truth is that to build your own robot, you do not really need to deeply
understand any of this. The vast majority of robots you will encounter are built from
simple parts that are not difficult to understand when you see the big picture.

So, let's figure out how we will build our own robot. Let's find out what are the
robots made of.

What can we find in a robot?
In the very first part of this chapter, we tried to come up with a good (modern)
definition of a robot. It turns out that the definition we came up with does not
only describe a robot as we know it (or would like to know it), but also gives us
some great pointers as to what parts can we most definitely find in (or on) a robot.
Let's see our definition again:

"A robot is an autonomous system which exists in the physical world, can sense its
environment, and can act on it to achieve some goals."

So, what will these most important parts be? Here is what we think should be on
this list.

Introduction to Robotics

[12]

The physical body
It will be hard for a robot to exist in the physical world without a physical body. While
this obviously has its advantages (having a real world robot you can play with is much
more exciting than having a computer simulation), there is also some price to be paid.
For instance, a physical robot can only be at one place at a time, cannot really change
its shape, and its functions are quite limited by how its body looks. As its environment
will be the physical world, it's safe to assume that the robot will not be the only object
in it. This already poses some challenges, such as making sure that the robot won't
run into some wall, object, human, or even another robot. Also, in order to do this,
the robot needs to be able, as the definition says, to sense its environment.

Sensors
We already discussed in quite some depth about how important a robot's sensors
are because without them, he would be just lost. A good question to ask might be,
"So, what does a robot actually sense?". As in many other places (in science and
technology), it depends on what the robot's purpose and goal in a given environment
is, the design of the robot, and the amount of power it consumes, and so on. A good
robot designer and programmer tries to take all these dependencies into account so
that in the end, the final robot can have the right amount of information about its
environment to fulfill its purpose and reach its goals.

One important notion with regards to sensing is that of a state. A state of a robot
basically means a description of all its parameters at any given time. For instance,
if we consider a robot to have some sound sensors (thanks to which it could measure
the noise level in its environment), but no way of figuring out how much battery
power does it have left, we can call its state partially-observable. On the other hand, if
it had a sensor for every output of the robot and every physical characteristic of the
environment the robot resides in, we can call such a state fully observable.

Now that we know the state of the robot in the environment, our robot needs
something that can be used to leave some effect on its environment. Something
like an effector.

Effectors
We already touched (albeit briefly) on the topic of effectors when we were trying to
decipher parts of our definition of a robot, so we already know that effectors let the
robot do physical things and the small subparts of them, actuators, are actually those
that do the heavy lifting.

Chapter 1

[13]

What we did not mention was that, historically, there are two main activities
effectors can help with: locomotion and manipulation.

In general, locomotion means moving around: going from point A to point B. This is
of great interest in a subfield of robotics, which is called mobile robotics. This area of
research is concerned with all sorts of robots that move in the air, underwater, or just
on the ground.

By manipulation, we mean a process of moving an object from one place to another.
This process is of huge interest to manipulator robotics, which is concerned mostly
with all sorts of robotic arms that in the vast majority of cases, are used in industry.

Just for the sake of completeness, what are the different effectors our robots can
make use of? Among the most basic ones, it will definitely be motors of all sorts
along with some wheels that will allow the robot to move around.

Once we have data from the environment, we can also act on it. There is just one
piece missing here: the link between them.

Controllers
After all, we finally came to the conclusion of this whole system. If it was not for
controllers, a robot could never ever be fully autonomous. This is to use data from
sensors to decide what to do next and then execute some actions using effectors.
This may look like a simple description, but in the end, it turns out that controllers
are quite difficult to get right, especially when you are playing with them for the
first time.

For most mobile robots and vast majority of hobby robots, controllers are usually
microprocessors that are programmed in some low-level programming language.
It's also not uncommon for a robot to use multiple controllers. However, while it
definitely helps to have a backup controller ready in case your main one brakes
down and great to have a modular system in which everything is its own module
(and has its own controller), you do not get this for free. The price you have to pay is
the communication between controllers, which requires a good deal of expertise.

Now that we have all the building blocks for a robot ready, we should at least briefly
discuss the ways in which they can be organized. This might not seem important, but
it turns out that having a good design up front can save us a lot of effort, energy, and
resources. So, let's dive into how we can put a robot together architecturally.

Introduction to Robotics

[14]

How do we build a robot?
If we try to look at the parts of a robot from the previous part of this chapter in an
abstract fashion, there are essentially three processes taking place: sensing (done by
sensors), acting (done by effectors), and then planning (if there is any, it's done by
controllers). Depending on how we put these three processes together (as they are
the building blocks they are also called primitives), we can get different architectures
with different properties. Let's at least say something about the three very basic
architectures (also called paradigms).

Reactive control
Reactive control is probably the simplest architecture (or paradigm) one can put
together with the primitives described previously. In this paradigm, as we can
see in the following figure, there is no planning process involved. There is a direct
connection between sensing and acting, which means that as soon as some sensory
data comes in, the effectors act on the environment in some predefined way:

Just as the reflexes in your body do not send the information about something
happening all the way up to the brain (which would be quite slow), but rather just
to the nearest spinal cord so that the response could be fast, a reactively-controlled
robot will not have any complex computation, but fast, precomputed actions that
will be stored somewhere.

Hierarchical (deliberative) control
Suppose you were programming a chess playing robot with the rules of ordinary
chess, it would be your robot's turn, then your robot's opponent's, and so on. It's
obvious that in a setting like this, your robot does not really need to be extremely
fast. However, it will be great if it did some planning about the future so that it can
anticipate the future opponent's turns and then adjust its strategy, based on the
opponent's current turn.

Chapter 1

[15]

A set up like this will be perfect for hierarchical (or deliberative) control paradigm.
As you can see in the following figure, the loop of planning, acting, and sensing is
closed. Thus, the system can actively move towards its goal, whatever that might be:

Hybrid control
So far, we discussed control paradigms that was either fast but not very flexible,
or smart but quite slow. What we will really need in many cases is something in
between. Also, this is precisely what a hybrid control paradigm tries to offer.

How can we use this in a real-life robot? Suppose we want to build a robotic
waiter that would serve drinks in a coffee shop (coincidentally, that is what most
of this book is about). Such a waiter would definitely need to have its own internal
representation of the coffee shop (where are the tables and chairs located, and so on).
Once it's given a task of delivering a cup of coffee to a given customer, it will have to
plan its path and then move alongside that path. As we can expect this coffee shop
to be quite a good one, there maybe other guests inside too. We cannot let our robot
bump into any chair or a table, let alone colliding with a customer randomly while
it's trying to deliver coffee. For this, we need a well tuned reactive controller.

The following figure shows the schematics of the hybrid control paradigm. We can
see that the robot at first plans its task, but breaks it down it into series of actions
that can be executed by the reactive paradigm. One interesting thing to note here is
the fact that the sensory data is available to aid the planning (as it needs to do some
planning) and the acting (as it does the reactive control) parts of the system:

Introduction to Robotics

[16]

That's about it! Now, you know what a robot is, what makes it a robot, where it
came from, the parts needed to create a robot, and how you can architecturally
put it together. It's about time you build one yourself!

Summary
In this chapter, you learned what a robot actually is and where this term
came from. We did our best to define a robot as an autonomous machine that
exists in a physical world, can sense its environment, and can act on it to achieve
some goals. We also went through a brief history of the field of robotics and
discovered that many interesting machines were built prior to the era of real robots
(from our definition). Later on, we discussed the basic building blocks of a robot,
that is, effectors, sensors, and controllers, which can be combined in numerous ways.
Finally, we dug a bit deeper into the architecture of control systems that are useful to
keep in mind when designing a robot.

In the next chapter, we will finally see some real robots along with a real
programming language.

[17]

Mechanical Design of a
Service Robot

The main purpose of this book is to learn robotics by designing and building robots
and programming it using Python. To learn robotics, we will first look at how to
mechanically design a robot from scratch. The robot that we are going to build is
used as a service robot in hotels and restaurants to serve food and drinks.

In this chapter, we can see various mechanical components used in this robot. Also,
we can see how to assemble its components. We can design and assemble the parts
using CAD tool and also build a 3D model of robot for simulating the robot.

The actual robot deployed in hotels may be big, but here we are intending to build a
miniature version of it only for testing our technology. If you are interested to build a
robot from scratch, this chapter is for you. If you are not interested to build the robot,
you can choose some robotic platforms already available on the market to work with
this book.

To build the robot body, we first need to know the requirements of designing the
robot; after getting the requirements, we can design it and draw the model in 2D
CAD tools to manufacture the robot parts. We can also discuss the 3D model to
simulate the robot for the next chapter.

Mechanical Design of a Service Robot

[18]

The Requirements of a service robot
Before designing any robotic system, the first procedure is to identify its
requirements. The following are a set of hardware requirements to be met
by this robot:

•	 The robot should have a provision to carry food
•	 The robot should be able to carry a maximum payload of 5 kg
•	 The robot should travel at a speed between 0.25 m/s and 1 m/s
•	 The ground clearance of the robot should be greater than 3 cm
•	 The robot must be able to work for 2 hours continuously
•	 The robot should be able to move and supply food to any table

avoiding obstacles
•	 The robot height should be between 40 cm and 1 meter
•	 The robot should be of low cost

Now, we can identify the mechanical design requirements such as payload, moving
speed, ground clearance, robot height, and the cost of the robot. We will design the
body and select components accordingly. Let's discuss the robot mechanism we can
use to match these requirements.

Robot drive mechanism
One of the cost effective solution for mobile robot navigation is differential drive
systems. It's one of the simplest drive mechanisms for a mobile robot that is mainly
indented for indoor navigation. The differential drive robot consists of two wheels
mounted on a common axis controlled by two separate motors. There are two
supporting wheels called caster wheels. It ensures stability and weight distribution
of the robot. The following diagram shows a typical differential drive system:

Chapter 2

[19]

Differential drive system

The next step is to select the mechanical components of this robot drive system, that
is, mainly motors, wheels, and robot chassis. Based on the requirements, we will first
discuss how to select the motor.

Selection of motors and wheels
Motors are selected after looking at their specifications. Some of the important
parameters for motor selection are torque and RPM. We can compute these values
from the given requirements.

Calculation of RPM of motors
Assume the required robot's speed as 0.35 m/s. We saw the speed of robot must be
within 0.25 m/s to 1 m/s, as per the requirement. Take the diameter of the wheel as
9 cm because according to the requirement, the ground clearance should be greater
than 3 cm. Using the following equation, we can calculate the RPM of motors:

RPM = ((60 * Speed /(3.14 * Diameter of Wheel)

RPM = (60 * 0.35)/(3.14 * 0.09) = 21 / 0.2826 = 74 RPM

Mechanical Design of a Service Robot

[20]

You can also take a look at http://www.robotshop.com/
blog/en/vehicle-speed-rpm-and-wheel-diameter-
finder-9786 for computation.

The calculated RPM with 9 cm diameter wheel and 0.35 m/s speed is 74 RPM. We
can consider 80 RPM as the standard value.

Calculation of motor torque
Let's calculate the torque required to move the robot:

1.	 No of wheels = Four wheels including two caster wheels.
2.	 No of motors = Two.
3.	 Let's assume the coefficient of friction is 0.6 and radius of wheel is 4.5 cm.
4.	 Take total weight of robot = weight of robot + payload = (W = mg) = (~ 100 N

+ ~ 50 N) W= ~ 150 N, whereas total mass = 15 Kg
5.	 The weight acting on the four wheels can be written as 2 * N1 + 2 * N2 = W,

that is, N1 is the weight acting on each caster wheel and N2 on each
motor wheel.

6.	 Assume that the robot is stationary. The maximum torque is required
when the robot starts moving. It should also overcome friction.

7.	 We can write the frictional force as robot torque = 0 until the robot moves.
If we get the robot torque in this condition, we get the maximum torque
as follows:
µ * N * r - T = 0, where µ is the coefficient of friction, N is the average weight
acting on each wheel, r is the radius of wheels, and T is the torque.
N = W/4 (assuming that the weight of the robot is equally distributed on
all the four wheels)
Therefore, we get:
0.6 * (150/4) * 0.045 - T = 0
Hence, T = 1.0125 N-m or 10.32 Kg-cm

The design summary
After design, we calculated the following values:

•	 Motor RPM = 80
•	 Motor Torque = 10.32 kg-cm
•	 Wheel diameter = 9 cm

http://www.robotshop.com/blog/en/vehicle-speed-rpm-and-wheel-diameter-finder-9786
http://www.robotshop.com/blog/en/vehicle-speed-rpm-and-wheel-diameter-finder-9786
http://www.robotshop.com/blog/en/vehicle-speed-rpm-and-wheel-diameter-finder-9786

Chapter 2

[21]

Robot chassis design
After computing the robot's motor and wheel parameters, we can design the robot
chassis or robot body. As required, the robot chassis should have a provision to hold
food, it should be able to withstand up to 5 kg payload, the ground clearance of the
robot should be greater than 3 cm and it should be low in cost. Apart from this, the
robot should have a provision to place electronics components such as Personal
Computer (PC), sensors, and battery.

One of the easiest designs to satisfy these requirements is a table-like design. The
TurtleBot (http://www.turtlebot.com/) design is a kind of table-like design. It has
three layers in the chassis. A robot platform called Roomba is the drive mechanism
of this platform. The Roomba platform has motors and sensors inbuilt, so no need
to worry about the designing of robot hardware. The following figure shows the
TurtleBot robot chassis design:

TurtleBot Robot

We will design a robot similar to TurtleBot with our own moving platform and
components. Our design will also have a three layer architecture. Let's see what
all tools we want before we start designing.

Before we start designing the robot chassis, we need to know about Computer-aided
design (CAD) tools. The popular tools available for CAD are:

•	 SolidWorks (http://www.solidworks.com/default.htm)
•	 AutoCAD (http://www.autodesk.com/products/autocad/overview)
•	 Maya (http://www.autodesk.com/products/maya/overview)
•	 Inventor (http://www.autodesk.com/products/inventor/overview)
•	 Google SketchUp (http://www.sketchup.com/)
•	 Blender (http://www.blender.org/download/)
•	 LibreCAD (http://librecad.org/cms/home.html)

http://www.turtlebot.com/
http://www.solidworks.com/default.htm
http://www.autodesk.com/products/autocad/overview
http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/inventor/overview
http://www.sketchup.com/
http://www.blender.org/download/
http://librecad.org/cms/home.html

Mechanical Design of a Service Robot

[22]

The chassis design can be designed using any software you are comfortable with.
Here, we will demonstrate the 2D model in LibreCAD and the 3D model in Blender.
One of the highlights of these applications is that they are free and available for all
OS platforms. We will use a 3D mesh viewing tool called MeshLab to view and
check the 3D model design and use Ubuntu as the main operating system. Also, we
can see the installation procedures of these applications in Ubuntu 14.04.2 to start
the designing process. We will provide tutorial links to install applications in other
platforms too.

Installing LibreCAD, Blender, and
MeshLab
LibreCAD is a free, open source 2D CAD application for Windows, OS X,
and Linux. Blender is a free, open source 3D computer graphics software used
to create 3D models, animation, and video games. It comes with a GPL license as
per which users can share, modify, and distribute the application. MeshLab is an
open source, portable, and extensible system to process and edit unstructured 3D
triangular meshes.

The following are the links to install LibreCAD in Windows, Linux, and OS X:

•	 Visit http://librecad.org/cms/home.html to download LibreCAD
•	 Visit http://librecad.org/cms/home/from-source/linux.html to

build LibreCAD from source
•	 Visit http://librecad.org/cms/home/installation/linux.html to

install LibreCAD in Debian/Ubuntu
•	 Visit http://librecad.org/cms/home/installation/rpm-packages.

html to install LibreCAD in Fedora
•	 Visit http://librecad.org/cms/home/installation/osx.html to

install LibreCAD in OS X

http://librecad.org/cms/home.html
http://librecad.org/cms/home/from-source/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/rpm-packages.html
http://librecad.org/cms/home/installation/rpm-packages.html
http://librecad.org/cms/home/installation/osx.html

Chapter 2

[23]

•	 Visit http://librecad.org/cms/home/installation/windows.html to
install LibreCAD in Windows

We can find the documentation on LibreCAD at the following link:
http://wiki.librecad.org/index.php/Main_Page.

Installing LibreCAD
The installation procedure for all operating systems is provided. If you are an
Ubuntu user, you can simply install it from the Ubuntu Software Centre as well.

Installing Blender
Visit the following download page to install Blender for your OS platform: http://
www.blender.org/download/. You can find the latest version of Blender here. Also,
you can find the latest documentation on Blender at http://wiki.blender.org/.

If you are using Ubuntu/Linux, you can simply install Blender via Ubuntu Software
Centre.

Installing MeshLab
MeshLab is available for all OS platforms. The following link will provide you the
download links of prebuilt binaries and source code of MeshLab:

http://meshlab.sourceforge.net/

If you are an Ubuntu user, you can install MeshLab from an apt package manager
using the following command:

$sudo apt-get install meshlab

http://librecad.org/cms/home/installation/windows.html
http://wiki.librecad.org/index.php/Main_Page
http://www.blender.org/download/
http://www.blender.org/download/
http://wiki.blender.org/
http://meshlab.sourceforge.net/

Mechanical Design of a Service Robot

[24]

Creating a 2D CAD drawing of the robot
using LibreCAD
We can take a look at the basic interface of LibreCAD. The following screenshot
shows the interface of LibreCAD:

Chapter 2

[25]

A CAD toolbar has the necessary components to draw a model. The following
screenshot shows the detailed overview of the CAD toolbar:

A detailed description of LibreCAD tools is available at the following link:

http://wiki.librecad.org/index.php/LibreCAD_users_Manual.

•	 Command Box: This is used to draw figures by only using commands.
We can draw diagrams without touching any toolbar. A detailed explanation
about the usage of the command box can be found at:
http://wiki.librecad.org/index.php/A_short_manual_for_use_from_
the_command_line.

•	 Layer List: This will have layers used in the current drawing. A basic
concept in computer-aided drafting is the use of layers to organize a
drawing. A detailed explanation of layers can be found at:
http://wiki.librecad.org/index.php/Layers.

http://wiki.librecad.org/index.php/LibreCAD_users_Manual
http://wiki.librecad.org/index.php/A_short_manual_for_use_from_the_command_line
http://wiki.librecad.org/index.php/A_short_manual_for_use_from_the_command_line
http://wiki.librecad.org/index.php/Layers

Mechanical Design of a Service Robot

[26]

•	 Block: This is a group of entities and can be inserted in the same drawing
more than once with different attributes at different locations, different scale,
and rotation angle. A detailed explanation of Blocks can be found at the
following link:
http://wiki.librecad.org/index.php/Blocks.

•	 Absolute Zero: This is the origin of the drawing (0,0).

Now, start sketching by setting the unit of drawing. Set the drawing unit to
centimeter. Open LibreCAD, navigate to Edit | Application Preference. Set Unit as
Centimeters, as shown in the following screenshot:

Let's start with the base plate design. The base plate has provisions to connect
motors, place battery, and control board.

http://wiki.librecad.org/index.php/Blocks

Chapter 2

[27]

The base plate design
The following figure shows the robot's base plate. This plate provides provisions for
two motors for differential drive and each caster wheel on the front and back of the
base plate. Motors are mentioned as M1 and M2 in the diagram and caster wheels
are represented as C1 and C2. It also holds four poles to connect to the next plates.
Poles are represented as P1-1, P1-2, P1-3, and P1-4. The screws are indicated as S
and we will use the same screws here. There is a hole at the center to bring the wires
from the motor to the top of the plate. The plate is cut on the left-hand side and the
right-hand side so that the wheels can be attached to the motor. The distance from
the center to caster wheels is mentioned as 12.5 cm and the distance from the center
to motors is mentioned as 5.5 cm. The center of poles is at 9 cm in length and 9 cm in
height from the center. The holes of all the plates follow the same dimensions:

Mechanical Design of a Service Robot

[28]

The dimensions are not marked on the diagram; instead, it's mentioned in the
following table:

Parts Dimension(cm)(Length x Height)(radius)
M1 and M2 5 x 4
C1 and C2 Radius = 1.5
S(Screw) 0.15
P1-1, P1-2, P1-3, P1-4 Outer radius 0.7, Height 3.5
Left and Right Wheel Sections 2.5 x 10
Base plate Radius = 15

We can discuss more about motor dimensions and clamp dimensions later.

Base plate pole design
The base plate has four poles to extend to the next layer. The poles are 3.5 cm in
length with a radius of 0.7 cm. We can extend to the next plate by attaching hollow
tubes to the poles. At the top of the hollow tube, we will insert a hard plastic to make
a screw hole. This hole will be useful to extend to the top layer. The base plate pole
and the hollow tubes on each pole is shown in the following figure. Each hollow tube
 a radius of 0.75 cm and length of 15 cm:

Chapter 2

[29]

Wheel, motor, and motor clamp design
We have to decide the diameter of the wheel and compute motor requirements. Here,
we are using a typical motor and wheel that we can use if the design is successful:

The motor design can vary according to the motor selection; if necessary, this motor
can be taken as per the design and can be changed after simulation. The X value in
the motor diagram can vary according to the speed and torque of motors. This is the
gear assembly of motor.

The following figure shows a typical wheel that we can use with a diameter of 90 cm.
The wheel with a diameter of 86.5 mm will become 90 mm after placing the grip.

Mechanical Design of a Service Robot

[30]

The motor needs to be mounted on the base plate; to mount, we need a clamp which
can be screwed onto the plate and also connect the motor to the clamp. The following
figure shows a typical clamp we can use for this purpose. It's an L-shaped clamp,
with which we can mount the motor on one side and fit another side to the plate:

Caster wheel design
Caster wheels need not have a special design; we can use any caster wheel that can
touch the ground similar to the wheels. The following link has a collection of caster
wheels that we can use for this design:

http://www.pololu.com/category/45/pololu-ball-casters

http://www.pololu.com/category/45/pololu-ball-casters

Chapter 2

[31]

Middle plate design
The dimension of this plate is same as the base plate, and the screw size is
also similar:

The middle plate can be held above the hollow tubes from the base plate. This
arrangement is connected using another hollow tube that extends from the middle
plate. The tube from the middle plate will have a screw at the bottom to fix the tube
from the base plate to the middle plate, and a hollow end to connect the top plate.
The top and side view of the tube extending from the middle plate is shown in the
following figure:

This tube will connect the middle plate to the base plate and at the same time
provide a provision to connect the top plate.

Mechanical Design of a Service Robot

[32]

Top plate design
The top plate is similar to other plates; it has four small poles of 3 cm, similar to the
base plate. These poles can be placed on the hollow tubes from the middle plate.
The four poles are connected to the plate, shown as follows:

After the top plate design, the robot chassis design is almost finished; let's see the
3D model building of this robot using Blender. The 3D model is built for simulation
purpose and the 2D design we build is mainly for manufacturing purpose.

Working with a 3D model of the robot
using Blender
In this section, we will design a 3D model of the robot. The 3D model is mainly used
for simulation purpose. The modeling will be done using Blender. The version must
be greater than 2.6 because we only tested the tutorials on these versions.

Chapter 2

[33]

The following screenshot shows the blender workspace and tools that can be used to
work with 3D models:

The main reason why we are using Blender here is so that we can model the robot
using Python scripts. Blender has an inbuilt Python interpreter and a Python script
editor for coding purpose. We are not discussing about the user interface of Blender
here. We can find a good tutorial of Blender on its website. Refer to the following
link to learn about Blender's user interface:

http://www.blender.org/support/tutorials/

Let's start coding in Blender using Python.

Python scripting in Blender
Blender is mainly written in C, C++, and Python. Users can write their own Python
script and access all the functionalities of Blender. If you are an expert in Blender
Python APIs, you can model the entire robot using a Python script instead of
manual modeling.

http://www.blender.org/support/tutorials/

Mechanical Design of a Service Robot

[34]

Blender uses Python 3.x. Blender. Python API is generally stable, but some areas
are still being added to and improved. Refer to http://www.blender.org/
documentation/blender_python_api_2_69_7/ for the documentation on
Blender Python API.

Let's discuss Blender Python APIs that we will use in our robot model script.

Introduction to Blender Python APIs
Python APIs in Blender can do most of the functionalities of Blender. The main
jobs that can be done by these APIs are as follows:

•	 Edit any data inside Blender, such as scenes, meshes, particles, and so on
•	 Modify user preference, key maps, and themes
•	 Create new Blender tools
•	 Draw the 3D view using OpenGL commands from Python

Blender provides the bpy module to the Python interpreter. This module can be
imported in a script and gives access to blender data, classes, and functions; scripts
that deal with Blender data will need to import this module. The main Python
modules we will use in bpy are:

•	 Context Access: This provides access to Blender user interface functions from
the (bpy.context) script.

•	 Data Access: This provides access to the Blender internal data (bpy.data).
•	 Operators: This provides Python access to calling operators, which includes

operators written in C, Python, or Macros (bpy.ops).

http://www.blender.org/documentation/blender_python_api_2_69_7/
http://www.blender.org/documentation/blender_python_api_2_69_7/

Chapter 2

[35]

For switching to scripting in Blender, we need to change the screen layout of
Blender. The following screenshot shows the option that helps you to switch to
Scripting layout:

After selecting the Scripting tab, we can see a text editor and Python console
window in Blender. In the text editor, we can code using Blender APIs and also
try Python commands via the Python console. Click on the New button to create
a new Python script and name it robot.py. Now, we can design the 3D model of
robot using only Python scripts. The upcoming section has the complete script to
design our robot model. We can discuss the code before running it. We hope you
have read the Python APIs of Blender from their site. The code in the upcoming
section is split into six Python functions to draw three robot plates, draw motors
and wheels, draw four support tubes, and export into the STereoLithography (STL)
3D file format for simulation.

Mechanical Design of a Service Robot

[36]

Python script of the robot model
The following is the Python script of the robot model that we will design:.

1.	 Before starting Python script in Blender, we must import the bpy module.
The bpy module contains all the functionalities of Blender and it can only be
accessed from inside the Blender application:
import bpy

2.	 This following function will draw the base plate of the robot. This function
will draw a cylinder with a radius of 5 cm and cut a portion from the
opposite sides so that motors can be connected using the Boolean modifier
inside Blender:
#This function will draw base plate
def Draw_Base_Plate():

3.	 The following two commands will create two cubes with a radius of 0.05
meter on either side of the base plate. The purpose of these cubes is to
create a modifier that subtracts the cubes from the base plate. So in effect,
we will get a base plate with two cuts. After cutting the two sides, we will
delete the cubes:
 bpy.ops.mesh.primitive_cube_add(radius=0.05,
 location=(0.175,0,0.09))
 bpy.ops.mesh.primitive_cube_add(radius=0.05,
 location=(-0.175,0,0.09))

 ##
 ##

 #Adding base plate
 bpy.ops.mesh.primitive_cylinder_add(radius=0.15,
 depth=0.005, location=(0,0,0.09))

 #Adding boolean difference modifier from first cube

 bpy.ops.object.modifier_add(type='BOOLEAN')
 bpy.context.object.modifiers["Boolean"].operation =
 'DIFFERENCE'
 bpy.context.object.modifiers["Boolean"].object =
 bpy.data.objects["Cube"]
 bpy.ops.object.modifier_apply(modifier="Boolean")

Chapter 2

[37]

 ##
 ##

 #Adding boolean difference modifier from second cube

 bpy.ops.object.modifier_add(type='BOOLEAN')
 bpy.context.object.modifiers["Boolean"].operation =
 'DIFFERENCE'
 bpy.context.object.modifiers["Boolean"].object =
 bpy.data.objects["Cube.001"]
 bpy.ops.object.modifier_apply(modifier="Boolean")

 ###
 ###

 #Deselect cylinder and delete cubes
 bpy.ops.object.select_pattern(pattern="Cube")
 bpy.ops.object.select_pattern(pattern="Cube.001")
 bpy.data.objects['Cylinder'].select = False
 bpy.ops.object.delete(use_global=False)

4.	 The following function will draw the motors and wheels attached to the
base plate:
#This function will draw motors and wheels
def Draw_Motors_Wheels():

5.	 The following commands will draw a cylinder with a radius of 0.045 and 0.01
meter in depth for the wheels. After creating the wheels, it will be rotated
and translated into the cut portion of the base plate:
 #Create first Wheel

 bpy.ops.mesh.primitive_cylinder_add(radius=0.045,
 depth=0.01, location=(0,0,0.07))
 #Rotate
 bpy.context.object.rotation_euler[1] = 1.5708
 #Transalation
 bpy.context.object.location[0] = 0.135

Mechanical Design of a Service Robot

[38]

 #Create second wheel
 bpy.ops.mesh.primitive_cylinder_add(radius=0.045,
 depth=0.01, location=(0,0,0.07))
 #Rotate
 bpy.context.object.rotation_euler[1] = 1.5708
 #Transalation
 bpy.context.object.location[0] = -0.135

6.	 The following code will add two dummy motors to the base plate.
The dimensions of motors are mentioned in the 2D design. The motor is
basically a cylinder and it will be rotated and placed in the base plate:
 #Adding motors

 bpy.ops.mesh.primitive_cylinder_add(radius=0.018,
 depth=0.06, location=(0.075,0,0.075))
 bpy.context.object.rotation_euler[1] = 1.5708

 bpy.ops.mesh.primitive_cylinder_add(radius=0.018,
 depth=0.06, location=(-0.075,0,0.075))
 bpy.context.object.rotation_euler[1] = 1.5708

7.	 The following code will add a shaft to the motors, similar to the motor
model; the shaft is also a cylinder and it will be rotated and inserted into
the motor model:
 #Adding motor shaft
 bpy.ops.mesh.primitive_cylinder_add(radius=0.006,
 depth=0.04, location=(0.12,0,0.075))
 bpy.context.object.rotation_euler[1] = 1.5708

 bpy.ops.mesh.primitive_cylinder_add(radius=0.006,
 depth=0.04, location=(-0.12,0,0.075))
 bpy.context.object.rotation_euler[1] = 1.5708

 ###
 ###

8.	 The following code will add two caster wheels on the base plate.
Currently, we are adding a cylinder as wheel. In the simulation,
we can assign it as a wheel:
 #Adding Caster Wheel

 bpy.ops.mesh.primitive_cylinder_add(radius=0.015,
 depth=0.05, location=(0,0.125,0.065))
 bpy.ops.mesh.primitive_cylinder_add(radius=0.015,
 depth=0.05, location=(0,-0.125,0.065))

Chapter 2

[39]

9.	 The following code will add a dummy Kinect sensor:
 #Adding Kinect

 bpy.ops.mesh.primitive_cube_add(radius=0.04,
 location=(0,0,0.26))

10.	 This function will draw the middle plate of the robot:
#Draw middle plate
def Draw_Middle_Plate():
 bpy.ops.mesh.primitive_cylinder_add(radius=0.15,
 depth=0.005, location=(0,0,0.22))

#Adding top plate
def Draw_Top_Plate():
 bpy.ops.mesh.primitive_cylinder_add(radius=0.15,
 depth=0.005, location=(0,0,0.37))

11.	 This function will draw all the four supporting hollow tubes for all the
three plates:
#Adding support tubes
def Draw_Support_Tubes():
##
###########################

 #Cylinders
 bpy.ops.mesh.primitive_cylinder_add(radius=0.007,
 depth=0.30, location=(0.09,0.09,0.23))
 bpy.ops.mesh.primitive_cylinder_add(radius=0.007,
 depth=0.30, location=(-0.09,0.09,0.23))
 bpy.ops.mesh.primitive_cylinder_add(radius=0.007,
 depth=0.30, location=(-0.09,-0.09,0.23))
 bpy.ops.mesh.primitive_cylinder_add(radius=0.007,
 depth=0.30, location=(0.09,-0.09,0.23))

Mechanical Design of a Service Robot

[40]

12.	 This function will export the designed robot to STL. We have to change the
STL file path before executing the script:
#Exporting into STL
def Save_to_STL():
 bpy.ops.object.select_all(action='SELECT')
bpy.ops.mesh.select_all(action='TOGGLE')
 bpy.ops.export_mesh.stl(check_existing=True,
 filepath="/home/lentin/Desktop/exported.stl",
 filter_glob="*.stl", ascii=False,
 use_mesh_modifiers=True, axis_forward='Y',
 axis_up='Z', global_scale=1.0)

#Main code

if __name__ == "__main__":
 Draw_Base_Plate()
 Draw_Motors_Wheels()
 Draw_Middle_Plate()
 Draw_Top_Plate()
 Draw_Support_Tubes()
 Save_to_STL()

13.	 After entering the code in the text editor, execute the script by pressing
the Run Script button, as shown in the following screenshot. The output
3D model will be shown on the 3D view of Blender. Also, if we check the
desktop, we can see the exported.stl file for the simulation purposes:

Chapter 2

[41]

The exported.stl file can be opened with MeshLab and the following is a
screenshot of MeshLab:

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

Questions
1.	 What is robot modeling and what are its uses?
2.	 What is the aim of 2D robot model?
3.	 What is the aim of 3D robot model?
4.	 What is the advantage of Python scripting over manual modeling?

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Mechanical Design of a Service Robot

[42]

Summary
This chapter was mainly aimed at robot mechanical designing. It also included the
robot parameter calculation and robot chassis design. In robot designing, we first need
to have the prerequisites ready. Once it's ready, we can calculate the requirements of
the components to be used in the robot. After the component requirements are met, we
design the robot chassis according to the given requirements. The robot chassis design
involves 2D design of all the parts required to build the robot. After 2D designing, we
saw how to build the 3D robot model using Blender and Python script. The 3D model
was built using the dimensions that we used in 2D drawing. We also covered the
Blender Python script to build the entire 3D model. In this chapter, we got the design
of the robot that can be used to manufacture it, and also developed a 3D model for
simulation. In the next chapter, we will discuss the simulation of this robot model and
some popular simulation tools.

[43]

Working with Robot
Simulation Using ROS

and Gazebo
In the last chapter, we looked at the mechanical designing of our robot and
designed its 2D and 3D models. In this chapter, we will simulate the robot that we
designed. Before diving into simulation, we will look at the uses of robot simulation,
advantages, disadvantages, and various robotic software simulation tools.

We will also discuss kinematics and the dynamic parameters of the robot that
will help you to understand the functioning of the robot. After discussing these
concepts, we will discuss the software platforms that are used for this simulation.
We are planning to perform this simulation using Gazebo with the help of Robot
Operating System (ROS). After we discuss the basic concepts of ROS and Gazebo,
we will implement the robot kinematic and dynamic model of the robot according
to the Gazebo descriptions. Finally, we will simulate the robot in a typical hotel
environment and test the autonomous navigation ability of the robot to serve food.

Understanding robotic simulation
In general, robotic simulation is a process of developing a virtual model capable of
emulating the real-world process. Through simulation, we can create a virtual model
of the robot and test its design and programming code.

Working with Robot Simulation Using ROS and Gazebo

[44]

One of the definitions of simulation according to Systems Simulation: The Art and
Science, Robert E. Shannon, Prentice Hall is:

It is the process of designing a model of a real system and conducting experiments
with this model for the purpose of understanding the behavior of the system and for
evaluating various strategies for the operation of the system. Thus it is critical that
the mode be designed in such a way that the model behavior mimics the response
behavior of the real system to events that take place over time.

The term's model and system are key components of our definition of simulation.
By a model we mean a representation of a group of objects or ideas in some form
other than that of the entity itself. By a system we mean a group or collection of
interrelated elements that cooperate to accomplish some stated objective.

Robotic simulators are software applications that can model the robot and render
the virtual environment that mimics the real environment of the robot. In our case,
the environment is a typical hotel/restaurant with tables and chairs. We have to
make this same arrangement in simulators to test its working.

The following figure shows a robot simulator called Gazebo. It also shows a robot
called TurtleBot, along with some random objects. You will learn more about Gazebo
and TurtleBot in the upcoming sections of this chapter.

Robot simulator Gazebo

Chapter 3

[45]

We looked at the requirements to build the robot and the mechanical design of the
robot. The next step is to simulate the design process. It allows developers to test the
programming code and validate the mechanical design of the robot according to the
design proposal request. The virtual model of the robot can be modified without any
additional costs.

One of the main advantages of performing the simulation process is that we can
build a virtual prototype of a complex robot with less cost that behaves similar to the
actual design of the robot, and test the virtual robot until it meets the specifications.
The disadvantage is that, using simulators, we cannot cover the entire scenario that
may occur in the real world.

The advantages of simulation are:

•	 Low cost to build a robot from scratch
•	 The actual robot code can be tested with the simulated robot
•	 The design of the robot can be modified without any cost
•	 Any part of the robot can be tested
•	 If it's a complex project, then the robot can be simulated in stages
•	 A complete simulation can determine whether the robot meets the

specifications
•	 Almost all simulation software are compatible with a wide range of

programming languages

Some of the disadvantage are:

•	 In the real world, there may be more parameters than the virtual world;
we can't model all these parameters in simulation

•	 All simulation programs simulate what they are programmed to simulate

Let's take a look at some of the latest robotic simulator applications:

•	 Gazebo: This is a multirobot simulator with support for many sensors.
The software is compatible with ROS. It's a free and open source simulator
used extensively for robotic research. The official website of Gazebo is
www.gazebosim.org.

www.gazebosim.org

Working with Robot Simulation Using ROS and Gazebo

[46]

•	 V-REP: This is one of the most advanced 3D simulators for industrial
robots designed by Coppelia Robotics. This tool offers support for a wide
range of programming languages, including C/C++, Python, Java,
Lua, Matlab, and Urbi. This simulator has built-in support to develop
algorithms in order to simulate automation scenarios. The platform is
used in education as well by engineers. The official website of V-REP is
http://www.coppeliarobotics.com/.

•	 Webots: This is a 3D simulation platform developed by Cyberbotics and is
used in service and industrial robot simulations. This tool offers support
for Windows, Linux, and Apple platforms. It's one of the most common
simulation software used in education or for research purposes. Any robot
can be modeled, programmed, and simulated in C, C++, Java, Python,
Matlab, or URBI. This software is compatible with external libraries such as
Open Source Computer Vision (OpenCV).

•	 RoboLogix: This is a 3D industrial simulation software developed by Logic
Design. The RoboLogix platform was designed to emulate real-world
robotics applications with five-axis industrial robot. The program installed
on the robot can be developed and tested in a wide range of practical
applications. The platform offers support for a wide range of industrial
robots, including ABB, Fanuc, and Kawasaki.

Before performing the simulation, let's check how the robot works and what is the
math behind this.

Mathematical modeling of the robot
The important part of a mobile robot is its steering system. This will help the robot
to navigate in the environment. We will use the differential drive model to reduce
the complexity, cost, and size of the robot. A differential-drive robot consists of
two main wheels mounted on a common axis controlled by separate motors. A
differential drive system/steering system is a nonholonomic system, which means it
has constraints on the pose change. A car is an example of a nonholonomic system,
as it cannot change its position without changing its pose. Let's look at how our robot
works and how we model the robot in terms of its mathematics.

http://www.coppeliarobotics.com/

Chapter 3

[47]

Introduction to the differential steering system and
robot kinematics
Robot kinematics is the study of the mathematics of motion without considering
the forces that affect motion. It mainly deals with the geometric relationships that
govern the system. Robot dynamics is the study of motion in which all the forces
are modeled.

A mobile robot or vehicle has six degrees of freedom (DOF) expressed by the pose
(x, y, z, roll, pitch, and yaw). It consists of position (x, y, z) and attitude (roll, pitch,
and yaw). Roll refers to sidewise rotation, pitch refers to forward and backward
rotation, and yaw (called the heading or orientation) refers to the direction in which
the robot moves in the x-y plane. The differential-drive robot moves from x-y in the
plane, so the 2D pose consists mainly of x, y, and θ, where θ is the head of the robot
that points in the forward direction of the robot. This much information is sufficient
to describe a differential robot pose.

The pose of the robot in x, y, and θ in the global coordinate system

Working with Robot Simulation Using ROS and Gazebo

[48]

In a differential-drive robot, the motion can be controlled by adjusting the velocity
of two independently controlled motors on the left-hand side and the right-hand
side, that is, V-left and V-right respectively. The following figure shows a couple of
popular differential drive robots available on the market:

iRobot, Roomba, and Pioneer 3DX

The forward kinematics equations for a robot with a differential-drive system are
used to solve the following problem:

If robot is standing in a position (x, y, θ) at time t, determine the pose (x', y', θ') at t +
δt given the control parameters V-left and V-right.

This technique can be used in the robot to follow a particular trajectory.

Explaining of the forward kinematics equation
We can start by formulating a solution for forward kinematics. The following figure
is an illustration of one of the wheels of the robot:

A single wheel of the robot rotating along the local Y axis

Chapter 3

[49]

The motion around the y axis is known as roll; everything else can be considered
as slip. Let's assume that no slip occurs in this case. When the wheel completes one
full rotation, the canter moves at a distance of 2π r, where r is the radius of the wheel.
We will assume that the movement is two-dimensional. This means that the surface
is flat and even.

When the robot is about to perform a rolling motion, the robot must rotate around a
point that lies along its common left and right wheel axes. The point that the robot
rotates around is known as ICC- Instantaneous Center of Curvature (ICC). The
following diagram shows the wheel configuration of differential-drive with ICC:

Wheel configuration for a robot with differential-drive

The central concept for the derivation of the kinematic equation is the ω angular
velocity of the robot. Each wheel on the robot rotates around ICC along a circle
with a wheel radius of r.

The speed of the wheel is v = 2 πr / T, where T is the time taken to complete one
full turn around ICC. The ω angular velocity is defined as 2 π / T and typically has
the unit radians (or degrees) per second. Combining the equations for v and w
yields ω= 2 π / T.

v rω= (1)

Working with Robot Simulation Using ROS and Gazebo

[50]

A detailed model of the differential-drive system is shown in the following figure:

If we apply the previous equation in both wheels, the result will be the same,
that is, ω:

()
()

/ 2

/ 2

R l Vr

R l Vl

ω

ω

+ =

+ =

(2)
(3)

Where, R is the distance between ICC and the midpoint of the wheel axis and l is the
length of the wheel axis. After solving ω and R, we get the following result:

(4)

(5)
() ()

()
/ 2 /

/

R l Vl Vr Vr Vl

Vr Vl lω

= + −

= −

Chapter 3

[51]

The previous equation is useful for solving the forward kinematics problem. Suppose
the robot moves with an angular velocity of ω for δt seconds, it can change the robot's
orientation or where it is heading to:

tθ ωδ θ′ = + (6)

Where, the center of ICC rotation is given by basic trigonometry as:

[], ,x yICC ICC ICC x R sin y Rcosθ θ = = − +  (7)

Rotating the robot ωδt degrees around ICC

Working with Robot Simulation Using ROS and Gazebo

[52]

Given a starting position (x, y), the new position (x', y') can be computed using the
2D rotation matrix. The rotation around ICC with angular velocity ω for δt seconds
yields the following position at t + δt time:

() ()
() ()

x x

y y

x ICC ICCx
y ICC ICCy

cos t sin t
sin t cos t

ωδ ωδ
ωδ ωδ

−′ −     
= +      −′      

(8)

The new pose (x', y', and θ') can be computed from equations (6) and (8),
given ω, δt, and R.

ω can be computed from equation (5); Vr and Vl are often difficult to measure
accurately. Instead of measuring the velocity, the rotation of each wheel can be
measured using a sensor called wheel encoders. The data from the wheel encoders
is the robot's odometry values. These sensors are mounted on the wheel axes and
deliver binary signals for each step the wheel rotates (each step may be in the order
of 0.1 mm). These signals are fed to a counter such that vδt is the distance travelled
from time t to t + δt. We can write:

n * step = vδt

From this, we can compute v:

* /v n step tδ= (9)

If we insert equation (9) in equations (3) and (4), we get the following result:

() () () ()
() ()
/ 2 / / 2 /

/ * /

R l Vl Vr Vr Vl l nl nr nr nl

w t Vr Vl t l nr nl step lδ δ

= + − = + −

= − = −

(10)

(11)

Here, nl and nr are the encoder counts of the left and right wheels. Vl and Vr are the
speed of the left and right wheels respectively. Thus, the robot stands in pose (x, y, θ)
and moves nl and nr counts during a time step δt; the new pose (x', y', θ') is given by:

(12)
() ()
() ()

x x

y y

x cos sin 0 x-ICC ICC
y sin cos 0 y-ICC ICC

0 0 1

t t
t t

t

ωδ ωδ
ωδ ωδ

θ θ ωδ

′ −      
      ′ = +      

      ′      

Chapter 3

[53]

where,

() ()
()
[]

/ 2 /

* /

,

R l nl nr nr nl

t nr nl step l

ICC x R sin y Rcos

ωδ

θ θ

= + −

= −

= − +

(13)

(14)

(15)

The derived kinematic equation depends mainly on the design and geometry of the
robot. Different designs can lead to different equations.

Inverse kinematics
The forward kinematics equation provides an updated pose at a given wheel speed.
We can now think about the inverse problem.

Stand in pose (x, y, θ) at time t and determine the V-left and V-right control
parameters such that the pose at time t + δt is (x', y', θ').

In differential-drive, this problem may not have a solution because this kind of
robot can't be moved to any pose by simply setting the wheel velocity. It's because
of the robot constraints called nonholonomic robots that this problem can be solved,
because these kinds of robots can move to any pose.

In nonholonomic robots, there are some ways to increase the constrained mobility
if we allow a different sequence (V-left, V-right). If we insert values from equations
(12) to (15), we can identify some special cases of control:

•	 If V-right = V-left => nr = nl => R = ∞, ωδT = 0 =>: This means the robot
moves in a straight line and θ remains the same

•	 If V-right = -V-left => nr = -nl => R=0, ωδt = 2nl * step / l and
[], ,x yICC ICC ICC x y = =  => x' = x, y' = y, θ' = θ + ωδt =>: This means the robot

rotates in the position around ICC, that is, any θ is reachable, while (x, y)
remains unchanged

Combining these operations, the following algorithm can be used to reach any target
pose from the starting pose:

1.	 Rotate until the robot's orientation coincides with the line from the starting
position to the target position, V-right = -V-left = V-rot.

2.	 Drive straight until the robot's position coincides with the target position,
V-right = V-left = V-ahead.

Working with Robot Simulation Using ROS and Gazebo

[54]

3.	 Rotate until the robot's orientation coincides with the target orientation,
V-right = -V-left = V-rot.

where, V-rot and V-ahead can be chosen arbitrarily.

Refer to http://www8.cs.umu.se/~thomash/reports/
KinematicsEquationsForDifferentialDriveAnd
ArticulatedSteeringUMINF-11.19.pdf for more
information on kinematics equations.

We can switch to the details of tools we are using to simulate this robot.
Understanding the kinematics of the robot will help you to build the simulation
of the robot. It also helps you to write the software for the robot. The tools we will
use for the simulation are:

•	 Robot Operating System (ROS)
•	 Gazebo

These are some of the popular tools available for robotics programming and
simulation. Let's look at the features and a short introduction of ROS and Gazebo.
Later, we will discuss how to perform simulation using these tools.

Introduction to ROS and Gazebo
ROS is a software framework for writing robot software. The main aim of ROS is
to reuse the robotic software across the globe. ROS consists of a collection of tools,
libraries, and conventions that aim to simplify the task of creating complex and
robust robot behavior across a wide variety of robotic platforms.

The official definition of ROS is:

ROS is an open-source, meta-operating system for your robot. It provides
the services you would expect from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management.
It also provides tools and libraries for obtaining, building, writing, and running
code across multiple computers. ROS is similar in some respects to 'robot
frameworks, such as Player, YARP, Orocos, CARMEN, Orca, MOOS,
and Microsoft Robotics Studio.

Refer to http://wiki.ros.org/ROS/Introduction for more
information on ROS.

http://www8.cs.umu.se/~thomash/reports/KinematicsEquationsForDifferentialDriveAnd ArticulatedSteeringUMINF-11.19.pdf
http://www8.cs.umu.se/~thomash/reports/KinematicsEquationsForDifferentialDriveAnd ArticulatedSteeringUMINF-11.19.pdf
http://www8.cs.umu.se/~thomash/reports/KinematicsEquationsForDifferentialDriveAnd ArticulatedSteeringUMINF-11.19.pdf
http://wiki.ros.org/ROS/Introduction

Chapter 3

[55]

Some of the main features of ROS are:

•	 Distributed Framework: ROS is a distributed framework that can run on
multiple machines, so the computation of the robot can be divided over
different machines. It can reduce the on board processing of the robot.

•	 Code reuse: The main goal of ROS is to reuse code. Code reuse enables the
growth of a good research and development community around the world.
ROS executables are called nodes. These executables can be grouped into a
single entity called ROS packages. A group of packages is called a stack and
these stacks can be shared and distributed.

•	 Language independence: The ROS framework can be programmed using
popular languages (such as Python, C++, and Lisp). The nodes can be written
in any language and can communicate through ROS without any issues.

•	 Easy testing: ROS has a built-in unit/integration test framework called
rostest to test ROS packages.

•	 Scaling: ROS is appropriate for large runtime systems and for large
development processes.

•	 Free and Open Source: The source code of ROS is open and it's absolutely
free to use. The core part of ROS is licensed under BSD license and it can be
reused in commercial and closed source products.

Some of the main concepts of ROS are discussed in the upcoming section.

ROS Concepts
There are mainly three levels of ROS:

•	 The ROS file system
•	 The ROS Computation Graph
•	 The ROS community

The ROS filesystem
The ROS filesystem mainly covers how ROS files are organized on the disk.
The main terms we have to understand are:

•	 Packages: ROS packages are the main unit of an ROS software framework.
A ROS package may contain executables, ROS-dependent library,
configuration files, and so on. ROS packages can be reused and shared.

•	 Package Manifests: The manifests (package.xml) file will have all the details
of the packages, including name, description, license, and dependencies.

Working with Robot Simulation Using ROS and Gazebo

[56]

•	 Message (msg) types: Message descriptions are stored in the msg folder in a
package. ROS messages are data structures for sending data through ROS.
Message definitions are stored in a file with the .msg extension.

•	 Service (srv) types: Service descriptions are stored in the srv folder with
the .srv extension. The srv files define the request and response data
structure for service in ROS.

The ROS Computation Graph
The ROS Computation Graph is the peer-to-peer network of the ROS process that
processes data together. The basic concepts of ROS Computation Graph are nodes,
ROS Master, parameter server, messages, and services.

•	 Nodes: These are processes that perform computation. For example, one
node of a robot publishes the odometry data of the robot, another node
publishes the laser scanner data, and so on. An ROS node is written with the
help of an ROS client library (such as roscpp and rospy). We will look at this
library during the sample node creation.

•	 ROS Master: This provides name registration and a lookup for the rest of the
Computation Graph. Without starting the master, nodes will not find each
other nor send messages.

•	 Parameter server: This allows data to be stored in a central location.
•	 Messages: Nodes communicate with each other by passing messages.

A message is simply a data structure comprising of typed fields. This will
support data types, such as integer, floating point, Boolean, and so on.

•	 Topics: Nodes exchange data in the form of messages via ROS transport
system with a specific name called topics. Topic is the name used to identify
the content of the message. A node interested in a certain kind of data will
subscribe to the appropriate topic. In general, publishers and subscribers are
not aware of each other's existence. The idea is to decouple the production
of information from its consumption. Logically, one can think of a topic as a
strongly typed message bus. Each bus has a name and anyone can connect to
the bus to send or receive messages as long as they are the right type.

•	 Services: The publish/subscribe model is a very flexible communication
paradigm, but its many-to-many, one-way transport is not appropriate for
request/reply interactions, which are often required in a distributed system.
Request/reply is done via services, which are defined by a pair of message
structures: one for the request and one for the reply. A providing node offers
a service under a name and a client uses the service by sending the request
message and awaiting the reply. ROS client libraries generally present this
interaction to the programmer as if it were a remote procedure call.

Chapter 3

[57]

•	 Bags: These are formats to save and play back the ROS message data. Bags
are an important mechanism to store data (such as sensor data) that can be
difficult to collect, but it's necessary to develop and test algorithms.

The ROS Master acts as a name service in the ROS Computation Graph. It stores
topics and services registration information for ROS nodes. Nodes communicate
with the Master to report their registration information. As these nodes communicate
with the Master, they can receive information about other registered nodes and make
connections as appropriate. The master will also make call backs to these nodes
when this registration information changes, which allows nodes to dynamically
create connections as new nodes are run.

Nodes connect to other nodes directly; the Master only provides the lookup
information, much like a DNS server. Nodes that subscribe to a topic will request
connections from nodes that publish that topic and will establish that connection
over an agreed upon connection protocol. The most common protocol used in an
ROS is called TCPROS, which uses standard TCP/IP sockets.

The following figure shows how topics and service works between nodes
and Master:

The ROS community level
The ROS community level concepts are ROS resources that enable separate
communities to exchange software and knowledge. These resources include:

•	 Distributions: ROS Distributions are collections of versioned stacks that you
can install. Distributions play a similar role to Linux distributions: they make
it easier to install software and maintain consistent versions of it.

Working with Robot Simulation Using ROS and Gazebo

[58]

•	 Repositories: ROS relies on a federated network of code repositories,
where different institutions can develop and release their own robot
software components.

•	 The ROS Wiki: This is the main forum to document information about ROS.
Anyone can sign up for an account and contribute their own documentation,
provide corrections or updates, write tutorials, and so on.

•	 Mailing Lists: The ros-users mailing list is the primary communication
channel about new updates to ROS. This is also a forum to ask questions
about the ROS software.

There are enough concepts to be discussed about ROS; you can refer to the ROS
official website at www.ros.org for more information. Now, we will look at the
installation procedure of ROS.

Installing ROS Indigo on Ubuntu 14.04.2
As per our previous discussion, we know that ROS is a meta operating system
to be installed on a host system. ROS is completely supported on Ubuntu/Linux
and in the experimental stages on Windows and OS X. Some of the latest ROS
distributions are:

Distribution Released Date
ROS Indigo Igloo July 22, 2014
ROS Hydro Medusa September 4, 2013
ROS Groovy Galapagos December 31, 2012

We will discuss the installation procedure of the latest distribution of ROS called
Indigo Igloo on Ubuntu 14.04.2 LTS. ROS Indigo Igloo will be primarily targeted
at the Ubuntu 14.04 LTS. If you are a Windows or OS X user, you can preferably
install Ubuntu in a VirtualBox application and install ROS on it. The link to
download VirtualBox is https://www.virtualbox.org/wiki/Downloads.

www.ros.org
https://www.virtualbox.org/wiki/Downloads

Chapter 3

[59]

The installation instructions are as follows:

1.	 Configure your Ubuntu repositories to allow restricted, universe,
and multiverse downloadable. We can configure it using Ubuntu's
Software & Update tool. We can get this by tool by simply searching
on the Ubuntu Unity search menu and tick the following options,
as shown in the following screenshot:

Ubuntu's Software and Update tool

2.	 Set up your system to accept ROS packages from packages.ros.org.
ROS Indigo is supported only on Ubuntu 13.10 and Ubuntu 14.04. The
following command will store packages.ros.org to Ubuntu's apt
repository list:
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu
 trusty main" > /etc/apt/sources.list.d/ros-latest.list'

3.	 Next, we have to add apt-keys. The apt-key is used to manage the list of
keys used by apt to authenticate the packages. Packages that have been
authenticated using these keys will be considered trusted. The following
command will add apt-keys for ROS packages:
$ wget https://raw.githubusercontent.com/ros/rosdistro/master/
ros.key -O - | sudo apt-key add -

packages.ros.org

Working with Robot Simulation Using ROS and Gazebo

[60]

4.	 After adding apt-keys, we have to update the Ubuntu package index.
The following command will add and update the ROS packages along
with the Ubuntu packages:
$ sudo apt-get update

5.	 After updating the ROS packages, we can install the packages. The following
command will install the necessary tools and libraries of ROS:
$ sudo apt-get install ros-indigo-desktop-full

6.	 We may need to install additional packages even after the desktop-full
installation; each additional installation will be mentioned in the appropriate
section. The desktop-full install will take some time. After the installation of
ROS, you are almost done. The next step is to initialize rosdep, which enables
you to easily install the system dependencies for ROS source packages you
want to compile and is required to run some core components in ROS:
$ sudo rosdep init

$ rosdep update

7.	 To access the ROS tools and commands on the current bash shell, we can
add ROS environmental variables to the .bashrc file. This will execute in
the beginning of each bash session. The following is a command to add the
ROS variable to .bashrc:
echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

The following command will execute the .bashrc script on the current
shell to generate the change in the current shell:

source ~/.bashrc

8.	 One of the useful tools to install is rosinstall. This tool has to be installed
separately. It enables you to easily download many source trees for the
ROS package with one command:

$ sudo apt-get install python-rosinstall

After the installation of ROS, we will discuss how to create a sample package in
ROS. Before creating a package, we have to build an ROS workspace. The packages
are created in the ROS workspace. We will use the catkin build system, a set of tools
to build packages in ROS. The catkin build system generates executable or shared
libraries from the source code. ROS Indigo uses the catkin build system to build
packages. Let's see what catkin is.

Chapter 3

[61]

Introducing catkin
Catkin is the official build system of ROS. Before catkin, ROS used the rosbuild
system to build packages. Its replacement is catkin on the latest ROS version.
Catkin combines CMake macros and Python scripts to provide the same CMake
normal workflow. Catkin provides a better distribution of packages, better
cross-compilation, and better portability than the rosbuild system. For more
information, refer to wiki.ros.org/catkin.

Catkin workspace is a folder where you can modify, build, and install
catkin packages.

Let's check how to create an ROS catkin workspace.

The following command will create a parent directory called catkin_ws and
a subfolder called src:

$ mkdir -p ~/catkin_ws/src

Switch directory to the src folder using the following command. We will create
our packages in the src folder:

$ cd ~/catkin_ws/src

Initialize the catkin workspace using the following command:

$catkin_init_workspace

After you initialize the catkin workspace, you can simply build the package
(even if there is no source file) using the following command:

$ cd ~/catkin_ws/

$catkin_make

The catkin_make command is used to build packages inside the src directory.
After building the packages, we will see a build and devel folder in catkin_ws.
The executables are stored in the build folder and in the devel folder, there are
shell script files to add to the workspace on the ROS environment.

Creating an ROS package
In this section, we will see how to create a sample package that contains two
Python nodes. One of the nodes is used to publish a Hello World message on
a topic, and the other node will subscribe to this topic.

wiki.ros.org/catkin

Working with Robot Simulation Using ROS and Gazebo

[62]

A catkin ROS package can be created using the catkin_create_pkg command
in ROS.

The package is created inside the src folder that we created during the creation
of workspace. Before creating packages, switch to the src folder using the
following command:

$ cd ~/catkin_ws/src

The following command will create a hello_world package with std_msgs
dependencies, which contain standard message definitions.The rospy is the
Python client library for ROS:

$ catkin_create_pkg hello_world std_msgs rospy

This is the message we get after the successful creation:

Created file hello_world/package.xml

Created file hello_world/CMakeLists.txt

Created folder hello_world/src

Successfully created files in /home/lentin/catkin_ws/src/hello_world.
Please adjust the values in package.xml.

After the successful creation of the hello_world package, we need to add two
Python nodes or scripts to demonstrate the subscribing and publishing of topics.

First, create a folder named scripts in the hello_world package using the
following command:

$ mkdir scripts

Switch to the scripts folder and create a script named hello_world_publisher.
py and another script called hello_world_subscriber.py to publish and subscribe
to the hello world message. The following section covers the code and explanation of
these scripts or nodes:

Hello_world_publisher.py
The hello_world_publisher.py node basically publishes a greeting message called
hello world to a topic /hello_pub. The greeting message is published to the topic at
the rate of 10 Hz.

Chapter 3

[63]

The step by step explanation of this code is as follows:

1.	 We need to import rospy if we are writing an ROS Python node. It contains
Python API's to interact with ROS topics, services, and so on.

2.	 To send the hello world message, we have to import a String data type
from the std_msgs package. It has a message definition for standard data
types. We can import using the following command:
#!/usr/bin/env python

import rospy

from std_msgs.msg import String

3.	 The following line of code creates a publisher object to a topic called
hello_pub. The data type is String and queue_size is 10. If the subscriber
is not fast enough to receive the data, we can use the queue_size option to
adjust it:
def talker():

 pub = rospy.Publisher('hello_pub', String, queue_size=10)

4.	 The following line of code is mandatory for all ROS Python nodes. It
initializes and assigns a name to the node. The node cannot be launched until
it gets a name. It can communicate with other nodes using its name. If two
nodes are running with the same node name, one will shut down. If we want
to run both nodes, use the anonymous=True flag as shown here:
rospy.init_node('hello_world_publisher', anonymous=True)

5.	 The following line creates a rate object called r. Using a sleep() method in
the Rate object, we can update the loop in a desired rate. Here, we are given
at rate 10:
r = rospy.Rate(10) # 10hz

6.	 The following loop will check whether rospy constructs the rospy.is_
shutdown() flag. Then, it executes the loop. If we click on Ctr + C, this
loop will exit.
Inside the loop, a hello world message is printed on the terminal and
published on the hello_pub topic with a rate of 10 Hz:

 while not rospy.is_shutdown():
 str = "hello world %s"%rospy.get_time()
 rospy.loginfo(str)
 pub.publish(str)
 r.sleep()

Working with Robot Simulation Using ROS and Gazebo

[64]

7.	 In addition to the standard Python __main__ check, the following code
catches a rospy.ROSInterruptException exception, which can be thrown
by the rospy.sleep() method, and the rospy.Rate.sleep() method, when
Ctrl + C is clicked on or your node is otherwise shutdown. The reason this
exception is raised is so that you don't accidentally continue executing code
after the sleep() method:

if __name__ == '__main__':
 try:
 talker()
 except rospy.ROSInterruptException: pass

After publishing the topic, we will see how to subscribe it. The following section
covers the code to subscribe the hello_pub topic.

Hello_world_subscriber.py
The subscriber code is as follows:

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

The following code is a callback function that is executed when a message reaches
the hello_pub topic. The data variable contains the message from the topic and it
will print using rospy.loginfo():

def callback(data):
 rospy.loginfo(rospy.get_caller_id()+"I heard %s",data.data)

The following section will start the node with a hello_world_subscriber name and
start subscribing to the /hello_pub topic.

1.	 The data type of the message is String and when a message arrives on this
topic, a method called callback will be called:
 def listener():
 rospy.init_node('hello_world_subscriber',
 anonymous=True)
 rospy.Subscriber("hello_pub", String, callback)

Chapter 3

[65]

2.	 This will keep your node from exiting until the node is shutdown:
 rospy.spin()

3.	 The following is the main check of the Python code. The main section will
call the listener() method, which will subscribe to the /hello_pub topic:
if __name__ == '__main__':
 listener()

4.	 After saving two Python nodes, you need to change the permission to
executable using the chmod commands:
chmod +x hello_world_publisher.py

chmod +x hello_world_subscriber.py

5.	 After changing the file permission, build the package using the catkin_make
command:
cd ~/catkin_ws

catkin_make

6.	 Following command adds the current ROS workspace path in all terminal so
that we can access the ROS packages inside this workspace:

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

The following is the output of the subscriber and publisher nodes:

1.	 First, we need to run roscore before starting the nodes. The roscore
command or ROS master is needed to communicate between nodes.
So, the first command is:
$ roscore

2.	 After executing roscore, run each node using the following commands.
3.	 The following command will run the publisher:

$ rosrun hello_world hello_world_publisher.py

Working with Robot Simulation Using ROS and Gazebo

[66]

4.	 The following command will run the subscriber node. This node subscribes
to the hello_pub topic, as shown in the following screenshot:

$ rosrun hello_world hello_world_subscriber.py

We covered some basics of ROS. Now, we will see what is Gazebo is and how
we can work with Gazebo using ROS.

Introducing Gazebo
Gazebo is a free and open source robot simulator in which we can test algorithms,
design robots, and perform regression testing using realistic scenarios. Gazebo can
accurately and efficiently simulate a population of robots in complex indoor and
outdoor environments. Gazebo is built in a robust physics engine with high quality
graphics and a convenient programmatic and graphical interface.

The features of Gazebo are as follows:

•	 Dynamic simulation: Gazebo can simulate dynamics of a robot using a
physics engine such as Open Dynamics Engine (ODE). (http://opende.
sourceforge.net/), Bullet (http://bulletphysics.org/wordpress/),
Simbody (https://simtk.org/home/simbody/), and DART
(http://dartsim.github.io/).

http://opende.sourceforge.net/
http://opende.sourceforge.net/
http://bulletphysics.org/wordpress/
https://simtk.org/home/simbody/
http://dartsim.github.io/

Chapter 3

[67]

•	 Advanced 3D Graphics: Gazebo provides high quality rendering,
lighting, shadows, and texturing using the OGRE framework
(http://www.ogre3d.org/).

•	 Sensors support: Gazebo supports a wide range of sensors, including
laser range finders, kinect style sensors, 2D/3D camera, and so on.
We can simulate either with noise or without noise.

•	 Plug-in: We can develop custom plugins for the robot, sensor,
and environmental control. Plugins can access Gazebo's API.

•	 Robot Models: Gazebo provides models for popular robots, such as PR2,
Pioneer 2 DX, iRobot Create, and TurtleBot. We can also build custom
models of robots.

•	 TCP//IP Transport: We can run simulation on a remote machine and a
Gazebo interface through a socket-based message passing service.

•	 Cloud Simulation: We can run simulation on the Cloud server using the
CloudSim framework (http://cloudsim.io/).

•	 Command Line Tools: Extensive command-line tools are used to check
and log simulation.

Installing Gazebo
Gazebo can be installed as a standalone application or an integrated application
along with ROS. In this chapter, we will use Gazebo along with ROS for simulation
and to test our written code using the ROS framework.

If you want to try the latest Gazebo simulator independently, you can follow the
procedure given at http://gazebosim.org/download.

To work with Gazebo and ROS, we don't need to install it separately because
Gazebo is built-in along with the ROS desktop-full installation.

The ROS package integrates Gazebo with ROS named gazebo_ros_pkgs, which has
created wrappers around a standalone Gazebo. This package provides the necessary
interface to simulate a robot in Gazebo using ROS message services.

The complete Gazebo_ros_pkgs can be installed in ROS Indigo using the
following command:

$ sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-
 gazebo-ros-control

http://www.ogre3d.org/
http://cloudsim.io/
http://gazebosim.org/download

Working with Robot Simulation Using ROS and Gazebo

[68]

Testing Gazebo with the ROS interface
Assuming that the ROS environment is properly set up, we can start roscore
before starting Gazebo using the following command:

$ roscore

The following command will run Gazebo using ROS:

$ rosrun gazebo_ros gazebo

Gazebo is running as two executables, that is, the Gazebo server and the Gazebo
client. The Gazebo server will execute the simulation process and the Gazebo client
can be the Gazebo GUI. Using the previous command, the Gazebo client and server
will run in parallel.

The Gazebo GUI is shown in the following screenshot:

After starting Gazebo, we will see the following topics generated. Using the
rostopic command, we will find the following list of topics:

$ rostopic list

/gazebo/link_states

Chapter 3

[69]

/gazebo/model_states

/gazebo/parameter_descriptions

/gazebo/parameter_updates

/gazebo/set_link_state

/gazebo/set_model_state

We can run the server and client separately using the following command:

•	 Run the Gazebo server using the following command:
$ rosrun gazebo_ros gzserver

•	 Run the Gazebo client using the following command:

$ rosrun gazebo_ros gzclient

We have installed the basic packages of Gazebo in ROS. If you are not planning to
build the hardware for this robot, the alternative plan is to buy another robot called
TurtleBot (http://store.clearpathrobotics.com/products/turtlebot-2).
Now, we will see how to install the TurtleBot stack on ROS.

Installing TurtleBot Robot packages on ROS Indigo
The TurtleBot installation procedure from its source is mentioned at
http://wiki.ros.org/Robots/TurtleBot.

The following is a quick procedure to install the TurtleBot stack and its dependencies
from the apt package manager:

1.	 First, you need to install the synaptic package manager using the following
command. Synaptic is a graphical package management program for apt. It
provides the same features as the apt-get command-line utility with a GUI
frontend based on GTK+:
$sudo apt-get install synaptic

2.	 After the installation of the synaptic package manager, open it and filter its
searches using the ros-indigo-rocon keyword.

http://store.clearpathrobotics.com/products/turtlebot-2
http://wiki.ros.org/Robots/TurtleBot

Working with Robot Simulation Using ROS and Gazebo

[70]

3.	 Install all the packages listed on synaptic, as shown in the
following screenshot:

Rocon, also known as robotics in concert, is a dependency of the TurtleBot stack.
This package mainly aims to bring ROS to multirobot device tablets. You can read
more about rocon at http://wiki.ros.org/rocon.

After the installation of rocon, we need to install another dependency called
the kobuki package. Kobuki is a similar robotic mobile platform from Yujin
Robots (http://wiki.ros.org/kobuki). TurtleBot packages are dependent
on these packages.

http://wiki.ros.org/rocon
http://wiki.ros.org/kobuki

Chapter 3

[71]

The ros-indigo-kobuki package can be installed using synaptic, such as the rocon
package. The following is a screenshot of the installation:

Following is the step by step procedure to build and install TurtleBot's latest ROS
packages from the source code in ROS Indigo. The dependencies for installing these
packages are already met in the previous procedure.

1.	 Create a folder called turtlebot in the home folder using the
following command:
$ mkdir ~/turtlebot

2.	 Switch the directory to turtlebot using the following command:
$ cd ~/turtlebot

Working with Robot Simulation Using ROS and Gazebo

[72]

3.	 Download the latest source code of TurtleBot using the following command:
$ wstool init src -j5

https://raw.github.com/yujinrobot/yujin_tools/master/
 rosinstalls/indigo/turtlebot.rosinstall

4.	 Install all the dependencies of the source code using the following command:
$ rosdep install --from-paths src -i -y

5.	 Build the source code using:
$ catkin_make

6.	 To access TurtleBot packages from all terminals, we have to add source ~/
turtlebot/devel/setup.bash command to the .bashrc file. The following
command will do this job:
$ echo "source ~/turtlebot/devel/setup.bash" >> ~/.bashrc

7.	 This command will execute the .bashrc file:

$ source ~/.bashrc

Installing TurtleBot ROS packages using the apt
package manager in Ubuntu
If you want to install TurtleBot packages without compiling source code, we can
use apt package manager. The following is the command to install TurtleBot
packages in ROS:

$ sudo apt-get install ros-indigo-turtlebot ros-indigo-turtlebot-apps
 ros-indigo-turtlebot-interactions ros-indigo-turtlebot-simulator
 ros-indigo-kobuki-ftdi ros-indigo-rocon-remocon

Let's check how to simulate TurtleBot in Gazebo and move the robot on an
empty environment.

Simulating TurtleBot using Gazebo and ROS
The TurtleBot simulator package contains the turtlebot_gazebo packages to
simulate TurtleBot on Gazebo.

After the successful installation of the TurtleBot package, we can enter the following
command to bring up the TurtleBot simulation using ROS and Gazebo:

$ roslaunch turtlebot_gazebo turtlebot_empty_world.launch

Chapter 3

[73]

On another terminal, run the following command. This will execute a Python script
to control TurtleBot using a keyboard; this is called keyboard teleoperation:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

Following is the screenshot of the output:

The top-left terminal executes the simulation command and the bottom-left window
executes the teleop command.

We can move around the robot with keyboard teleoperation using the keys
mentioned on the screen. We can also monitor the values from the model using the
rostopics command. We can view the current topics using the following command:

$ rostopic list

It publishes all the values from the sensors, such as the kinect sensor, the odometry
values from wheel encoders, the IMU sensor value for odometry, and Gazebo's
state values.

We will use the clone of the TurtleBot package in which the robot model and
simulation parameters are different. We can perform this cloning for most of the
mobile robot that has a differential steering system. We will create the packages for
our robot by cloning the TurtleBot code. We will name our custom robot as chefbot
instead of turtlebot, and all our packages will be named according to this.

Working with Robot Simulation Using ROS and Gazebo

[74]

Creating the Gazebo model from TurtleBot
packages
In TurtleBot packages, the simulation and kinematic models are implemented
using two packages, that is, turtlebot_gazebo and turtlebot_description. The
turtlebot_gazebo package has files to launch simulation in Gazebo. The turtlebot_
description package contains the Gazebo and the kinematic model of the robot.

We customized and reused the turtlebot packages and recreated the same packages
for our robot. We named our robot as chefbot; we can create chefbot_gazebo,
which contains the simulation launch files. The launch files in ROS are a kind of an
XML file in which we can launch multiple nodes and set multiple parameters by
running a single file. To run the launch file, we have to use the roslaunch command.

We can check out the implemented ROS packages of ChefBot at
http://wiki.ros.org/roslaunch for reference.

The following command clones the complete ROS packages of the ChefBot:

$git clone https://github.com/qboticslabs/Chefbot_ROS_pkg.git

The chefbot_description package contains the kinematic model and the Gazebo
model of the robot. The following figure shows the various files in these two packages:

The Chefbot_description and the Chefbot_Gazebo package

http://wiki.ros.org/roslaunch

Chapter 3

[75]

Switch to catkin_ws, which we created to develop ROS packages. In the src folder,
first create a folder called chefbot. Then, we can create all the packages of ChefBot
in it, using the following commands:

$ cd ~/catkin_ws/src

$ mkdir chefbot

$ cd chefbot

The chefbot_gazebo can be created using the following command with the
required dependencies:

$ catkin_create_pkg chefbot_gazebo depthimage_to_laserscan
 diagnostic_aggregator gazebo_ros kobuki_gazebo_plugins
 robot_pose_ekf robot_state_publisher xacro yocs_cmd_vel_mux
 create_gazebo_plugins create_description create_driver create_node

After creating the package, you can copy the two folders in chefbot_gazebo from
the source code of the chapter that can be downloaded from the Packt Publishing
website. This code is adapted from the turtlebot_gazebo package; you can also
refer to its code for further reference.

Here is the explanation of each file usage. First, we discussed the chefbot_gazebo
package. In the launch folder, there are launch files for each functionality:

•	 chefbot_empty_world.launch: This file will launch the ChefBot model in
Gazebo with an empty world, where the world is a Gazebo file containing
information about the robot environment.

•	 chefbot_playground.launch: This file will launch the Chefbot model in
Gazebo. The simulated Gazebo environment contains some random objects
like cylinders and boxes.

•	 gmapping_demo.launch: This file will start Simultaneous Localization
And Mapping (SLAM). Using SLAM, we can map the environment and
store it for future use. In our case, we can map a hotel environment using
this package. We will discuss more on gmapping in the upcoming chapter.
For more information on SLAM, refer to http://wiki.ros.org/gmapping.

•	 amcl_demo.launch: AMCL stands for Adaptive Monte Carlo Localization
(http://wiki.ros.org/amcl). After mapping the environment, the robot
can autonomously navigate by localizing itself on the map and also by giving
the feedback from wheels. The feedback from the robot is called odometry.
The localization algorithm AMCL and the navigation algorithm, such as path
planning is performed in this launch file.

http://wiki.ros.org/amcl

Working with Robot Simulation Using ROS and Gazebo

[76]

•	 chefbot_base.launch.xml: This XML file will parse an xacro file called
chefbot_circles_kinect.urdf.xacro to URDF present in the chefbot_
description folder. After converting the xacro file to URDF, it will generate
the robot model equivalent to ROS. We will learn more about URDF and
xacro after this section.

After generating the robot model in URDF, this file will generate the
Gazebo-compatible model from the URDF robot description. Also, it will start
a velocity muxer node that will prioritize the command velocity of the robot.
An example of command velocity is the teleoperation by keyboard or joystick.
According to the priority assigned, the command velocity will reach the robot. Let's
discuss more on URDF and xacro to get a clear picture of the description of the robot.

What is a robot model, URDF, xacro, and robot state
publisher?
Robot model in ROS contains packages to model the various aspects of the robot,
which is specified in the XML Robot Description Format (URDF). The core package
of this stack is URDF, which parses URDF files and constructs an object model of
the robot.

Unified Robot Description Format (URDF) is an XML specification to describe the
model of a robot. We can represent the following features of the robot using URDF:

•	 The kinematic and dynamic description of the robot
•	 The visual representation of the robot
•	 The collision model of the robot

The description of the robot consists of a set of link (part), elements, and a set of
joint elements, which connect these links together. A typical robot description is
shown in the following code:

<robot name="chefbot">
 <link> ... </link>
 <link> ... </link>
 <link> ... </link>

 <joint> </joint>
 <joint> </joint>
 <joint> </joint>
</robot>

Chapter 3

[77]

It will be good if you refer to the following links for more
information on URDF:
http://wiki.ros.org/urdf

http://wiki.ros.org/urdf/Tutorials

Xacro (XML Macros) is an XML macro language. With xacro, we can create
shorter and readable XML files. We can use xacro along with URDF to simplify
the URDF file. If we add xacro to urdf, we have to call the additional parser node
to convert xacro to urdf.

The following link can give you more idea about xacro:
http://wiki.ros.org/xacro

robot_state_publisher allows you to publish the state of the robot to tf
(http://wiki.ros.org/tf). Once the state gets published, it's available to all
the components in the system that also use tf. The package takes the joint angles of
the robot as input and publishes the 3D poses of the robot links using the kinematic
tree model of the robot. The package can be used as a library and as an ROS node.
This package has been well tested and the code is stable. No major changes are
planned in the near future.

•	 World files: These represent the environment of Gazebo, which have to
be loaded along with the robot. The empty.world and playground.world
world files are included in the launch files, so it will load when Gazebo starts.

•	 CMakeList.txt and package.xml: These files are created during the creation
of package. CmakeList.txt file helps to build the nodes or libraries within
a package and the package.xml file holds the list of all the dependencies of
this package.

Creating a ChefBot description ROS package
The chefbot_description package contains the urdf model of our robot.
Before creating this package by your own, you can go through the downloaded
packages of ChefBot. It can help you to speed up the process.

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/xacro
http://wiki.ros.org/tf

Working with Robot Simulation Using ROS and Gazebo

[78]

Let's check how to create the chefbot_description package. Following
procedure will guide you in creating this package:

1.	 First, we need to switch to the chefbot folder in the src folder:
$ cd ~/catkin_ws/src/chefbot

2.	 The following command will create the robot description package along
with dependencies, such as urdf, xacro, and the description package of
Kobuki, and create mobile robots:
$ catkin_create_pkg chefbot_description urdf xacro
 kobuki_description create_description

3.	 Copy the meshes, urdf, and robots folders from the downloaded source
to the package folder. The mesh folder holds the 3D parts of the robot and
the urdf folder contains the urdf description and the sensors of the robot.
The entire robot model is divided into a set of xacro files for easier debugging
and better readability.

Let's see the functionality of each files inside this package. You can refer the
downloaded source code for checking these files, and you can also copy these files
from the downloaded files to the newly created folder. The functionality of each
urdf folder is as follows:

•	 chefbot_base.urdf.xacro: This xacro represents the kinematic model of the
entire robot. It models the entire joints of the robot using the URDF tags.
The joint includes two wheels, two caster wheels, gyro sensors, and so on.
The 3D kinect sensor is not modeled in this file. It will also attach meshes to
each links. This file is reused from the Kobuki mobile-based package.

•	 chefbot_base_gazebo.urdf.xacro: This is the Gazebo model representation of
each link of the robot. It includes the actuator definition, sensor definitions,
the parameter setting of the differential robot, and so on. Gazebo uses
this value to perform the simulation. The robot parameters can change by
changing the values in this file.

•	 chefbot_gazebo.urdf.xacro: The previous Gazebo urdf does not have the
definitions of the 3D sensor kinect. This file starts the kinect_openni
Gazebo plugin to simulate the kinect sensor on the robot.

•	 chefbot_library.urdf.xacro: This file includes all the xacro files and sensors
of the robot. This single file can launch all the descriptions of the robot.

•	 chefbot_properties.urdf.xacro: This file includes the 3D kinect sensor
position on the robot model.

Chapter 3

[79]

•	 common_properties.urdf.xacro: This file contains properties of meshes
such as color.

•	 kinect.urdf.xacro: This file contains the Gazebo parameter of kinect
and is present inside the sensors folder. This file is included in the
chefbot_gazebo.urdf.xacro and chefbot_properties.urdf.xacro
files to set the kinect parameters.

•	 chefbot_circles_kinect_urdf.xacro: This file is inside the robot folder.
It includes the chefbot_library.urdf.xacro file, which will load all
the robot description files needed to start the simulation.

In the meshes folder, we mainly have the wheel and the body of the robot,
the 3D model parts of ChefBot.

Similar to TurtleBot, we can launch the ChefBot simulation using the
following command:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

When we execute this command, launch files will execute in the order, as shown
in the following screenshot:

Working with Robot Simulation Using ROS and Gazebo

[80]

We have already seen the functionality of each file. The important files we need to
discuss are:

•	 chefbot_gazebo.urdf.xacro

•	 kinect.urdf.xacro

•	 chefbot_base.urdf.xacro

chefbot_base_gazebo.urdf.xacro
Let's take a look at chefbot_base_gazebo.urdf.xacro. The actual file definition is
pretty long, so we will only discuss the important parts.

Before discussing Gazebo definitions, we can refer to the Gazebo tags parameters
mentioned in URDF. The various tags that can be used in the URDF can be found at
http://osrf-distributions.s3.amazonaws.com/sdformat/api/1.5.html.

The Gazebo definition for each link is mentioned in URDF as <gazebo> </gazebo>.
The following URDF definitions for individual joints of the robot are modeled using
the Gazebo parameters. The joints include wheel joints and caster wheel joints. The
mu1 and mu2 parameters are coefficients of friction. Kp and kd indicate the dynamical
stiffness and damping of a joint. MinDepth is the minimum allowable depth before
the contact correction impulse is applied. MaxVel is the maximum contact correction
velocity truncation term:

<?xml version="1.0"?>
<robot name="kobuki_sim" xmlns:xacro="http://ros.org/wiki/xacro">
 <xacro:macro name="kobuki_sim">
 <gazebo reference="wheel_left_link">
 <mu1>1.0</mu1>
 <mu2>1.0</mu2>
 <kp>1000000.0</kp>
 <kd>100.0</kd>
 <minDepth>0.001</minDepth>
 <maxVel>1.0</maxVel>
 </gazebo>

 <gazebo reference="wheel_right_link">
 <mu1>1.0</mu1>
 <mu2>1.0</mu2>
 <kp>1000000.0</kp>
 <kd>100.0</kd>
 <minDepth>0.001</minDepth>

http://osrf-distributions.s3.amazonaws.com/sdformat/api/1.5.html

Chapter 3

[81]

 <maxVel>1.0</maxVel>
 </gazebo>

 <gazebo reference="caster_front_link">
 <mu1>0.0</mu1>
 <mu2>0.0</mu2>
 <kp>1000000.0</kp>
 <kd>100.0</kd>
 <minDepth>0.001</minDepth>
 <maxVel>1.0</maxVel>
 </gazebo>

 <gazebo reference="caster_back_link">
 <mu1>0.0</mu1>
 <mu2>0.0</mu2>
 <kp>1000000.0</kp>
 <kd>100.0</kd>
 <minDepth>0.001</minDepth>
 <maxVel>1.0</maxVel>
 </gazebo>

The following section is used for the Inertial Measurement Unit (IMU) sensor in the
robot (http://en.wikipedia.org/wiki/Inertial_measurement_unit) modeled
in Gazebo. The main use of IMU in the robot is to generate a good odometry value:

 <gazebo reference="gyro_link">
 <sensor type="imu" name="imu">
 <always_on>true</always_on>
 <update_rate>50</update_rate>
 <visualize>false</visualize>
 <imu>
 <noise>
 <type>gaussian</type>
 <rate>
 <mean>0.0</mean>
 <stddev>${0.0014*0.0014}</stddev> <!-- 0.25 x 0.25
 (deg/s) -->
 <bias_mean>0.0</bias_mean>
 <bias_stddev>0.0</bias_stddev>
 </rate>
 <accel> <!-- not used in the plugin and real robot,
 hence using tutorial values -->
 <mean>0.0</mean>
 <stddev>1.7e-2</stddev>

http://en.wikipedia.org/wiki/Inertial_measurement_unit

Working with Robot Simulation Using ROS and Gazebo

[82]

 <bias_mean>0.1</bias_mean>
 <bias_stddev>0.001</bias_stddev>
 </accel>
 </noise>
 </imu>
 </sensor>
 </gazebo>

The differential-drive controller plugin for Gazebo is given in the following code.
We will reuse the Kobuki differential-drive plugin for the drive system. We will also
mention the main measurements of the robot, such as the wheel separation, wheel
diameter, torque of the motor, and so on, in this section. This section will also include
the cliff sensor, which will not be used in our model. We may ignore this section if
we don't want to use it:

 <gazebo>
 <plugin name="kobuki_controller"
 filename="libgazebo_ros_kobuki.so">
 <publish_tf>1</publish_tf>
 <left_wheel_joint_name>wheel_left_joint
 </left_wheel_joint_name>
 <right_wheel_joint_name>wheel_right_joint
 </right_wheel_joint_name>
 <wheel_separation>.30</wheel_separation>
 <wheel_diameter>0.09</wheel_diameter>
 <torque>18.0</torque>
 <velocity_command_timeout>0.6</velocity_command_timeout>
 <cliff_sensor_left_name>cliff_sensor_left
 </cliff_sensor_left_name>
 <cliff_sensor_center_name>cliff_sensor_front
 </cliff_sensor_center_name>
 <cliff_sensor_right_name>cliff_sensor_right
 </cliff_sensor_right_name>
 <cliff_detection_threshold>0.04
 </cliff_detection_threshold>
 <bumper_name>bumpers</bumper_name>
 <imu_name>imu</imu_name>
 </plugin>
 </gazebo>

Chapter 3

[83]

kinect.urdf.xacro
This file mainly has the definitions of joints and links of the kinect sensor.
This file also includes two launch files:

<xacro:include filename="$(find
 chefbot_description)/urdf/chefbot_gazebo.urdf.xacro"/>
<xacro:include filename="$(find
 chefbot_description)/urdf/chefbot_properties.urdf.xacro"/>

The chefbot_gazebo.urdf.xacro file consists of the kinect plugin for Gazebo.
We will reuse this plugin from TurtleBot. The kinect plugin is actually the
libgazebo_ros_openni_kinect.so file; we can also define the parameters of
Kinect, as shown in the following code:

 <plugin name="kinect_camera_controller"
 filename="libgazebo_ros_openni_kinect.so">
 <cameraName>camera</cameraName>
 <alwaysOn>true</alwaysOn>
 <updateRate>10</updateRate>
 <imageTopicName>rgb/image_raw</imageTopicName>
 <depthImageTopicName>depth/image_raw
 </depthImageTopicName>
 <pointCloudTopicName>depth/points</pointCloudTopicName>
 <cameraInfoTopicName>rgb/camera_info
 </cameraInfoTopicName>
 <depthImageCameraInfoTopicName>depth/camera_info
 </depthImageCameraInfoTopicName>
 <frameName>camera_depth_optical_frame</frameName>
 <baseline>0.1</baseline>
 <distortion_k1>0.0</distortion_k1>
 <distortion_k2>0.0</distortion_k2>
 <distortion_k3>0.0</distortion_k3>
 <distortion_t1>0.0</distortion_t1>
 <distortion_t2>0.0</distortion_t2>
 <pointCloudCutoff>0.4</pointCloudCutoff>
 </plugin>

chefbot_base.urdf.xacro
This file defines the links and joints of the robot and also includes the
chefbot_gazebo.urdf.xacro file. The joints of the robot are wheels, caster
wheels, and so on. Here is the XML definition of the body of the robot, the wheel
of the robot, and the caster wheel of the robot.

Working with Robot Simulation Using ROS and Gazebo

[84]

The base link of the robot includes the robot body, excluding the wheels. We can
export the robot body mesh from the blender and export it to the .DAE extension
using MeshLab (http://en.wikipedia.org/wiki/COLLADA). The base joint is
a fixed type. There is no movement on the base plate. We can define the collision
profile and inertia for each link of the robot. These files are reused from TurtleBot,
as shown in the following code:

 <xacro:macro name="kobuki">
 <link name="base_footprint"/>
 <!--
 Base link is set at the bottom of the base mould.
 This is done to be compatible with the way base link
 was configured for turtlebot 1. Refer to

 https://github.com/turtlebot/turtlebot/issues/40

 To put the base link at the more oft used wheel
 axis, set the z-distance from the base_footprint
 to 0.352.
 -->
 <joint name="base_joint" type="fixed">
 <origin xyz="0 0 0.0102" rpy="0 0 0" />
 <parent link="base_footprint"/>
 <child link="base_link" />
 </joint>
 <link name="base_link">
 <visual>
 <geometry>
 <!-- new mesh -->
 <mesh filename="package://chefbot_description/
 meshes/base_plate.dae" />
 </geometry>

<!-- <origin xyz="0.001 0 0.05199" rpy="0 0 ${M_PI/2}"/> -->
 <origin xyz="0.001 0 -0.034" rpy="0 0 ${M_PI/2}"/>
 </visual>
 <collision>
 <geometry>
 <cylinder length="0.10938" radius="0.178"/>
 </geometry>
 <origin xyz="0.0 0 0.05949" rpy="0 0 0"/>
 </collision>
 <inertial>

http://en.wikipedia.org/wiki/COLLADA

Chapter 3

[85]

 <!-- COM experimentally determined -->
 <origin xyz="0.01 0 0"/>
 <mass value="2.4"/> <!-- 2.4/2.6 kg for small/big battery
 pack -->
 <!-- Kobuki's inertia tensor is approximated by a
 cylinder with homogeneous mass distribution
 More details: http://en.wikipedia.org/wiki/
 List_of_moment_of_inertia_tensors
 m = 2.4 kg; h = 0.09 m; r = 0.175 m
 ixx = 1/12 * m * (3 * r^2 + h^2)
 iyy = 1/12 * m * (3 * r^2 + h^2)
 izz = 1/2 * m * r^2
 -->
 <inertia ixx="0.019995" ixy="0.0" ixz="0.0"
 iyy="0.019995" iyz="0.0"
 izz="0.03675" />
 </inertial>
 </link>

<!--One of the wheel joint is given below. The kind of joint
 used here is a continuous joint. -->

 <joint name="wheel_left_joint" type="continuous">
 <parent link="base_link"/>
 <child link="wheel_left_link"/>
 <origin xyz="0 ${0.28/2} 0.026" rpy="${-M_PI/2} 0 0"/>
 <axis xyz="0 0 1"/>
 </joint>
 <link name="wheel_left_link">
 <visual>
 <geometry>
 <mesh filename="package://
 chefbot_description/meshes/wheel.dae"/>
 </geometry>
 <origin xyz="0 0 0" rpy="0 0 0"/>
 </visual>
 <collision>
 <geometry>
 <cylinder length="0.0206" radius="0.0352"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0"/>
 </collision>

Working with Robot Simulation Using ROS and Gazebo

[86]

 <inertial>
 <mass value="0.01" />
 <origin xyz="0 0 0" />
 <inertia ixx="0.001" ixy="0.0" ixz="0.0"
 iyy="0.001" iyz="0.0"
 izz="0.001" />
 </inertial>
 </link>

Simulating ChefBot and TurtleBot in a hotel
environment
After discussing each file, we can try the simulation of two robots in a hotel
environment. The procedures and screenshots of the simulation are as follows.

Similar to TurtleBot, we can start ChefBot using the following commands:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

It will show the robot in Gazebo, as shown in the following screenshot:

Chapter 3

[87]

We can exit Gazebo and start building the hotel environment for the robot.

The first procedure is to create a world file and save it with the .world file extension.
A typical hotel environment with nine block-like tables is shown in the following
screenshot. You can take an empty Gazebo world using the following command and
make an environment using the basic shapes available in Gazebo:

1.	 Start roscore using the following command:
$ roscore

2.	 Start Gazebo with an empty world using the following command:
$ rosrun gazebo_ros gazebo

3.	 Now we have created an environment, as shown in the following screenshot,
and saved it as empty.world.

4.	 Copy empty.world to the world folder in the chefbot_decription package.
Start the robot with this environment using the following command:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

This will bring the same environment that we created before along with ChefBot.
The procedure remains the same for TurtleBot.

Working with Robot Simulation Using ROS and Gazebo

[88]

Instead of chefbot_description, we have to copy the turtlebot_description
folder for TurtleBot users:

1.	 Start the gmapping launch file to start mapping this area. We can use the
following command to launch the gmapping process:
$ roslaunch chefbot_gazebo gmapping_demo.launch

2.	 In TurtleBot, use the following command:
$ roslaunch turtlebot_gazebo gmapping_demo.launch

3.	 It will start the gmapping process and if we want to view the mapping
process, start rviz, a tool in ROS to visualize sensor data (http://wiki.ros.
org/rviz). The command is the same as it was for TurtleBot:

$ roslaunch turtlebot_rviz_launchers view_navigation.launch

The screenshot of rviz is as follows:

To create a map of the room, we have to start the keyboard teleoperation:

1.	 Using the keyboard teleoperation function, we can move the robot using
the keyboard so that it can map the entire area:
$ roslaunch turtlebot_teleop keyboard_teleop.launch

http://wiki.ros.org/rviz
http://wiki.ros.org/rviz

Chapter 3

[89]

2.	 The command is same for TurtleBot. A complete map of the surrounding is
shown in the following screenshot:

3.	 After building the map, we can save the name hotel_world using the
following command:
$ rosrun map_server map_saver -f ~/hotel_world

The command is same for TurtleBot

4.	 After saving the map, exit all the other applications that are currently in use.
5.	 After the map is generated, the next step is autonomous navigation and the

localization of the robot using the built map.
6.	 Start Gazebo using the following command:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

7.	 In TurtleBot, use the following command:
$ roslaunch turtlebotbot_gazebo chefbot_empty_world.launch

8.	 Start the amcl demo in ChefBot. Note the path because it may vary for
each user.

Working with Robot Simulation Using ROS and Gazebo

[90]

9.	 For ChefBot, use the following commands:
$ roslaunch chefbot_gazebo amcl_demo.launch
 map_file:=/home/lentin/hotel_world.yaml

10.	 For TurtleBot, use the following commands:
$ roslaunch turtlebot_gazebo amcl_demo.launch
 map_file:=/home/lentin/hotel_world.yaml

11.	 Start rviz using the following command. This is the same for both robots:

$ roslaunch turtlebot_rviz_launchers view_navigation.launch

Now we can command the robot to navigate to a position on the map using the
2D Nav Goal button. Click on this button and select a position that is near a table.
After clicking on this position, it will plan the path to that point and navigate to that
position, as shown in the following screenshot:

The robot can avoid obstacles and also plan the shortest path to the goal position.
After several runs, we found that the robot works perfectly if the map we build was
accurate. The map building procedure can be fine-tuned using the instructions at
(http://wiki.ros.org/costmap_2d). For an application such as serving food, it
requires pretty good accuracy in the map, so that the robot can deliver food to the
correct position.

http://wiki.ros.org/costmap_2d

Chapter 3

[91]

Questions
1.	 What is robot simulation and what are the popular robot simulators?
2.	 What is ROS and Gazebo?
3.	 What is the robot model in ROS?
4.	 What is gmapping and AMCL?

Summary
In this chapter, you learned how to simulate a custom robot called ChefBot.
We discussed the design of the the robot in the previous chapter. After the robot
design, we moved on to simulate the robot in a virtual environment to test the
design of the robot, and checked whether it met our specifications. In this chapter,
you learned about simulation and various simulator applications used in industry,
research, and education in detail. After that, we discussed how the ROS framework
and Gazebo simulator was used to perform the simulator work. We also created
a sample hello_world package using ROS. We installed the TurtleBot stack and
created ROS packages from the TurtleBot stack. Finally, we simulated the robot and
performed gmapping and autonomous navigation in a hotel environment. We got to
know that the accuracy of the simulation depends on the map, and that the robot will
work better in simulation if the generated map is perfect.

[93]

Designing ChefBot Hardware
In this chapter, we will discuss the design and working of ChefBot hardware and
selection of its hardware components. In the previous chapter, we designed and
simulated the basic robot framework in a hotel environment using Gazebo and
ROS, and tested various measurements like robot body mass, motor torque, wheel
diameter, and so on. Also, we tested the autonomous navigation capability of
ChefBot in a hotel environment.

To achieve this goal in hardware, we need to select all hardware components
and find how to interconnect all these components. We know that the main
functionality of this robot is navigation; this robot will have the ability to
navigate from the start position to the end position without any collision with its
surroundings. We will discuss the different sensors and hardware components
required to achieve this goal. We will see a block diagram representation and its
explanation, and also discuss the main working of the robot. Finally, we need to
select the components required to build the robot. We can also see the online stores
where we can purchase these components.

If you have a TurtleBot, you may skip this chapter because it is only for those who
need to create the robot hardware. Let's see what specifications we have to meet in
the hardware design. The robot hardware mainly includes robot chassis, sensors,
actuators, controller boards, and PC.

Designing ChefBot Hardware

[94]

Specifications of the ChefBot hardware
In this section, we will discussing some of the important specifications that we
mentioned in Chapter 2, Mechanical Design of a Service Robot. The final robot prototype
will meet the following specifications:

•	 Simple and cost effective robot chassis design: The robot chassis design
should be simple and cost effective.

•	 Autonomous navigation functionality: The robot should autonomously
navigate and it should contain necessary sensors for doing this.

•	 Long Battery life: The robot should have a long battery life in order to work
continuously. The working time should be greater than 1 hour.

•	 Obstacle avoidance: The robot should be able to avoid static and dynamic
objects in the surroundings.

The robot hardware design should meet these specifications. Let's look at one of
the possible ways of interconnecting the components in this robot. The next section
shows the block diagram of a robot and explains it.

Block diagram of the robot
The robot's movement is controlled by two Direct Current (DC) gear motors with
an encoder. The two motors are driven using a motor driver. The motor driver is
interfaced into an embedded controller board, which will send commands to the
motor driver to control the motor movements. The encoder of the motor is interfaced
into the controller board for counting the number of rotations of the motor shaft.
This data is the odometry data from the robot. There are ultrasonic sensors, which
are interfaced into the controller board for sensing the obstacles and measuring the
distance from the obstacles. There is an IMU sensor to improve odometry calculation.
The embedded controller board is interfaced into a PC, which does all the high-end
processing in the robot. Vision and sound sensors are interfaced into the PC and Wi-
Fi is attached for remote operations.

Chapter 4

[95]

Each block of the robot is explained in the following diagram:

Robot Hardware block Diagram

Motor and encoder
The robot that we are going to design is a differential drive robot with two
wheels, so we require two motors for its locomotion. Each motor consists of
quadrature encoders (http://letsmakerobots.com/node/24031) to get the
motor rotation feedback.

The quadrature encoder will give a feedback of the rotation of the motor as square
pulses; we can decode the pulse to get the number of ticks of the encoder, which can
be used for feedback. If we know the wheel diameter and the number of ticks of the
motor, we can compute the displacement and the angle of the robot that traversed.
This computation is very useful for navigation of the robot.

http://letsmakerobots.com/node/24031

Designing ChefBot Hardware

[96]

Selecting motors, encoders, and wheels for the
robot
From the simulation, we got an idea about the robot parameters. On the
simulation parameters, we mentioned that the motor torque needed to drive the
robot is 18 kg-cm, but the calculated torque is less than this; we are selecting a high
torque motor for better performance. One of the economical motors that we might
consider using is from Pololu. We can select a high torque DC gear motor with an
encoder working at 12 V DC and having speed of 80 RPM according to our design.
We are choosing the following motor for the drive system in this robot:

http://www.pololu.com/product/1447

The following figure shows the image of the selected motor for this robot. The motor
comes with an integrated quadrature encoder with a resolution of 64 counts per
revolution of the motor shaft, which corresponds to 8400 counts per revolution of the
gearbox's output shaft.

DC Gear motor with encoder and wheel

http://www.pololu.com/product/1447

Chapter 4

[97]

This motor has 6 pins with different colors. The pin description of this motor is given
in the following table:

Color Function
Red Motor power (connects to one motor terminal)
Black Motor power(connects to the other motor terminal)
Green Encoder GND
Blue Encoder Vcc (3.5 V - 20 V)
Yellow Encoder A output
White Encoder B output

According to our design, we chose a wheel diameter of 90 mm. Pololu provides
a 90 mm wheel, which is available at http://www.pololu.com/product/1439.
The preceding figure showed the motor assembled with this wheel.

The other connectors needed to connect the motors and wheels together are
available as follows:

•	 The mounting hub required to mount the wheel to the motor shaft is
available at http://www.pololu.com/product/1083

•	 The L- bracket for the motor to mount on robot chassis is available at
http://www.pololu.com/product/1084

Motor driver
A motor driver or motor controller is a circuit that can control the speed of the motor.
Controlling motors means that we can control the voltage across the motor and can
also control the direction and speed of the motor. Motors can rotate clockwise or
counter clockwise, if we change the polarity of motor terminal.

H-bridge circuits are commonly used in motor controllers. H-bridge is an electronic
circuit that can apply voltage in either direction of load. It has high current handling
properties and can change the direction of current flow.

http://www.pololu.com/product/1439
http://www.pololu.com/product/1083
http://www.pololu.com/product/1084

Designing ChefBot Hardware

[98]

The following screenshot shows a basic H-bridge circuit using switches:

H Bridge circuit

The direction of the motor, depending on the four switches, is given as follows:

S1 S2 S3 S4 Result
1 0 0 1 Motor moves right
0 1 1 0 Motor moves left
0 0 0 0 Motor free runs
0 1 0 1 Motor brakes
1 0 1 0 Motor brakes
1 1 0 0 Motor shoots through
0 0 1 1 Motor shoots through
1 1 1 1 Motor shoots through

We have seen the basics of an H-bridge circuit on the motor driver circuit. Now, we
can select one of the motor drivers for our application and discuss how it works.

Chapter 4

[99]

Selecting a motor driver/controller
There are some motor drivers available with Pololu, which are compatible with the
selected motor. The following figure shows one of the motor drivers that we will use
in our robot:

Dual VNH2SP30 Motor Driver Carrier MD03A

This motor driver is available at http://www.pololu.com/product/708.

This driver can drive two motors with a combined maximum current rating of 30 A,
and contains two integrated IC for driving each of the motors. The pin description of
this driver is given in the upcoming sections.

http://www.pololu.com/product/708

Designing ChefBot Hardware

[100]

Input pins
The following pins are the input pins of the motor driver, by which we can control
mainly the motor speed and direction:

Pin Name Function
1DIAG/EN, 2DIAG/EN This monitors the fault condition of motor

driver 1 and 2. In normal operation, it will
remain disconnected.

1INa, 1INb, 2INa, 2INb These pins will control the direction of motor
1 and 2 in the following manner:

•	 If INA = INB = 0, motor will break
•	 If INA = 1, INB = 0, motor will rotate

clockwise
•	 If INA = 0, INB = 1, motor rotate

counter clockwise
•	 If INA = INB = 1, motor will break

1PWM, 2PWM This will control the speed of motor 1 and 2
by rapidly turning them on and off.

1CS, 2CS This is the current sensing pin for each motor.

Output pins
The output pins of the motor driver will drive the two motors. The following are the
output pins:

Pin Name Function
OUT 1A, OUT 1B These pins connect to motor 1 power terminals
OUT 2A, OUT 2B These pins connect to motor 2 power terminals

Power supply pins
The following are the power supply pins:

Pin name Function
VIN (+), GND (-) These are the supply pins of the two motors. The voltage

ranges from 5.5 V to 16 V.
+5 VIN, GND (-) This is the supply of motor driver. The voltage should

be 5 V.

Chapter 4

[101]

Embedded controller board
Controller boards are typically I/O boards, which can send control signals in the
form of digital pulses to the H-Bridge/motor driver board and can receive inputs
from sensors such as ultrasonic and IR sensors. We can also interface motor encoders
to the control board for the motor feedback.

The main functionalities of Launchpad in this robot are:

•	 Interfacing the motor driver and encoder
•	 Interfacing the ultrasonic sound sensor
•	 Sending and receiving sensor values to PC and from PC

We will deal with I/O boards and interfacing with different components in the
upcoming chapters. Some of the popular I/O boards are Arduino (arduino.cc)
and Tiva C LaunchPad (http://www.ti.com/tool/EK-TM4C123GXL) by Texas
Instruments. We are selecting Tiva C LaunchPad over Arduino because of
following factors:

•	 Tiva C LaunchPad has a microcontroller based on 32-bit ARM Cortex-M4
with 256 KB Flash memory, 32 KB SRAM, and 80 MHz operation; however,
most of the Arduino boards run below this specification.

•	 Outstanding processing performance, combined with fast interrupt handling.
•	 12 Timers.
•	 16 PWM Outputs.
•	 Two quadrature encoder inputs.
•	 Eight Universal Asynchronous Receiver/Transmitter (UART).
•	 5 V tolerant General-Purpose Input/Output (GPIO).
•	 Low cost and size compared to Arduino boards.
•	 Easy programmable interface IDE called Energia (http://energia.nu/).

The code written in Energia is Arduino board compatible.

arduino.cc
http://www.ti.com/tool/EK-TM4C123GXL
http://energia.nu/

Designing ChefBot Hardware

[102]

The following image shows the Texas Instrument's Tiva C LaunchPad:

Tiva C Launchpad

The pinout of Texas Instrument Launchpad series is given at http://energia.nu/
pin-maps/guide_stellarislaunchpad/. This pinout is compatible with all the
Launchpad series. This is also used while programming in Energia IDE.

Ultrasonic sensors
Ultrasonic sensors are also called ping sensors, and are mainly used to measure the
robot's distance from an object. The main application of ping sensors is to avoid
obstacles. The ultrasonic sensor sends high frequency sound waves and evaluates the
echoes that are received from the object. The sensor will calculate the delay between
sending and receiving the echo, and from that, determine its distance from an object.

In our robot, collision-free navigation is an important aspect, otherwise there will be
damage to the robot. You will see a figure showing an ultrasonic sensor in the next
section. This sensor can be employed on the sides of a robot to detect collision on the
sides and back of the robot. The kinect is also mainly used for obstacle detection and
collision avoidance. The accuracy of kinect can only be expected from 0.8 m, so that
distance in between 0.8 m can be detected using ultrasonic sensor. It is actually an
add-on to our robot for increasing collision avoidance and detection.

http://energia.nu/pin-maps/guide_stellarislaunchpad/
http://energia.nu/pin-maps/guide_stellarislaunchpad/

Chapter 4

[103]

Selecting the ultrasonic sensor
One of the popular and cheap ultrasonic sensors available is HC-SR04. We are
selecting this sensor for our robot because of the following factors:

•	 Range of detection is from 2 cm to 4 m
•	 Working voltage is 5 V
•	 Working current is very low typically 15 mA

We can use this sensor for accurate detection of obstacles; it also works with 5 V.
Here is the image of HC-SR04 and its pinout:

Ultrasonic sound sensor

The pins and description are given as follows:

Pins Function
Vcc, GND These are the supply pins of ultrasonic sensor. Normally, we need to

apply 5 V for a normal operation.
Trig This is the input pin of the sensor. We need to apply a pulse with a

particular duration to this pin to send the ultrasonic sound waves.
Echo This is the output pin of the sensor. It will generate a pulse on this

pin with a time duration, according to the delay in receiving the
triggered pulse.

Designing ChefBot Hardware

[104]

Inertial Measurement Unit
We will use Inertial Measurement Unit (IMU) in this robot to get a good estimate
of the odometry value and the robot pose. The odometry values computed from the
encoder alone may not be sufficient for efficient navigation, it could contain errors.
To compensate for errors during the robot's movement, we will use IMU in this
robot. We are selecting MPU 6050 for IMU because of following reasons:

•	 In MPU 6050, the accelerometer and gyroscope are integrated on a
single chip

•	 It provides high accuracy and sensitivity
•	 There is provision to interface magnetometer for better IMU performance
•	 The breakout board of MPU 6050 is very cheap
•	 The MPU 6050 can directly interface to Launchpad, both are 3.3 V compatible

and software libraries are also available for easier interfacing

The following figure shows the breakout board of MPU 6050:

Chapter 4

[105]

The pins and their descriptions are given as follows:

Pins Functions
VDD, GND Supply voltage 2.3 V - 3.4 V
INT This pin will generate an interrupt when data

comes to the device buffer
SCL, SDA Serial Data Line (SDA) and Serial Clock

Line (SCL) are used for I2C communication
ASCL, ASDA Auxiliary I2C for communication with

Magnetometer

We can purchase the breakout board from https://www.sparkfun.com/
products/11028.

Kinect
Kinect is a 3D vision sensor, mainly used in 3D vision application and motion
gaming. We are using kinect for 3D vision. Using kinect, the robot will get the 3D
image of its surroundings. The 3D images are converted to finer points called point
cloud. The point cloud data will have all 3D parameters of the surrounding.

The main use of kinect on the robot is to mock the functionality of a laser scanner.
The laser scanner data is essential for an algorithm called SLAM, used for building
a map of the environment. The laser scanner is a very costly device, so instead
of buying an expensive laser scanner, we can convert a kinect into a virtual laser
scanner. Another alternative to kinect is Asus Xtion PRO (http://www.asus.com/
Multimedia/Xtion_PRO/). This will support the same software written for kinect.
The point cloud to laser data conversion is done on the software, so no need to
change the hardware parts. After generating a map of the environment,
the robot can navigate its surroundings.

https://www.sparkfun.com/products/11028
https://www.sparkfun.com/products/11028
http://www.asus.com/Multimedia/Xtion_PRO/
http://www.asus.com/Multimedia/Xtion_PRO/

Designing ChefBot Hardware

[106]

The following image shows the various parts of a kinect sensor:

Kinect

The kinect mainly has an IR camera and IR projector and also has an RGB camera.
The IR camera and projector generates the 3D point cloud of the surroundings. It also
has a mic array and motorized tilt for moving the kinect up and down.

We can purchase kinect from http://www.amazon.co.uk/Xbox-360-Kinect-
Sensor-Adventures/dp/B0036DDW2G.

Central Processing Unit
The robot is mainly controlled by its navigational algorithm that is running on its
PC. We can choose a laptop or mini PC or netbook for the processing. Recently,
Intel launched a minicomputer called Intel Next Unit of Computing (NUC). It has
an ultra small form factor (small size), is lightweight, and has a good computing
processor with Intel Celeron, Core i3, or Core i5. It can support upto 16 GB of
RAM and has integrated Wi-Fi/Bluetooth. We are choosing Intel NUC because
of its performance, ultra small form factor, and lightweight. We are not going
for a popular board, such as Raspberry Pi (http://www.raspberrypi.org/) or
BeagleBone (http://beagleboard.org/) because we require high computing power
in this case, which cannot be provided by these boards.

http://www.amazon.co.uk/Xbox-360-Kinect-Sensor-Adventures/dp/B0036DDW2G
http://www.amazon.co.uk/Xbox-360-Kinect-Sensor-Adventures/dp/B0036DDW2G
http://www.raspberrypi.org/
http://beagleboard.org/

Chapter 4

[107]

The NUC we are using is Intel DN2820FYKH. Here are the specifications
of this computer:

•	 Intel Celeron Dual Core processor with 2.39 GHz
•	 4 GB RAM
•	 500 GB hard disk
•	 Intel integrated graphics
•	 Headphone/microphone jack
•	 12 V supply

The following image shows the Intel NUC minicomputer:

Intel NUC DN2820FYKH

We can purchase NUC from http://goo.gl/Quzi7a.

http://goo.gl/Quzi7a

Designing ChefBot Hardware

[108]

Speakers/ mic
The main function of the robot is autonomous navigation. We are adding an
additional feature in which the robot can interact with users through speech.
The robot can be given commands using voice and can speak to the user using a text
to speech (TTS) engine, which can convert text to speech format. A microphone and
speakers are essential for this application. There is no particular selection for this
hardware. If the speaker and mic are USB compatible, then it will be great. Another
alternative is a Bluetooth headset.

Power supply/battery
One of the important hardware component is the power supply. We saw in the
specification that the robot has to work for more than 1 hour; it will be good if the
supply voltage of the battery is common to the components. Also, if the size and
weight of the battery is less, it will not affect the robot's payload. Another concern
is that the maximum current needed for the entire circuit should not exceed the
battery's maximum current, which it can source. The maximum voltage and current
distribution of each part of the circuit is as follows:

Components Maximum current (Ampere)
Intel NUC PC 12 V, 3 A
Kinect 12 V, 1 A
Motors 12 V,0.7 A
Motor driver, Ultrasonic sensor,
IMU, Speakers

5 V, < 0.5 A

To meet these specifications, we are selecting a 12V, 9 AH Li-Polymer battery for our
operation. This battery can also source maximum current up to 5 Ampere.

Chapter 4

[109]

The following image shows our selected battery for this robot:

We can buy the following battery from http://goo.gl/Clzk6I.

http://goo.gl/Clzk6I

Designing ChefBot Hardware

[110]

Working of the ChefBot hardware
We can explain the working of the ChefBot hardware using the following block
diagram. This improved version of our first block diagram mentions the voltage of
each component and its interconnection:

The main aim of this chapter was to design the hardware for ChefBot, which included
finding the appropriate hardware components and finding the interconnection
between each part. The main functionality of this robot is to perform autonomous
navigation. The hardware design of robot is optimized for autonomous navigation.

The robot drive is based on differential drive system, which consists of two motors
and two wheels. There are caster wheels for supporting the main wheels. These two
motors can move the robot in any pose in a 2D plane by adjusting their velocities
and direction.

For controlling the velocity and direction of the wheels, we have to interface a motor
controller, which can do these functions. The motor driver we chose should able to
control two motors at a time and change the direction and speed.

Chapter 4

[111]

The motor driver pins are interfaced to a microcontroller board called Tiva C
LaunchPad, which can send the commands to change the direction and speed of the
motor. The motor driver is interfaced into Launchpad with the help of a level shifter.
The level shifter is a circuit, which can shift voltage levels from 3.3 V to 5 V and vice
versa. We are using a level shifter because the motor driver is operating at 5 V level,
but the Launchpad is operating at 3.3 V.

Each motor has a rotation feedback sensor called the encoder, which can be used to
estimate the robot's position. The encoders are interfaced into the Launchpad along
with the level shifter.

Other sensors interfaced into Launchpad include ultrasonic sound sensor and IMU.
Ultrasonic sound sensor can detect objects that are close by, but cannot be detected
by the kinect sensor. IMU is used along with the encoders, to get a good robot
pose estimation.

All sensor values are received on the Launchpad and sent to PC via USB. The
Launchpad runs a firmware code that can receive all sensor values and send to
the PC.

The PC is interfaced to kinect, Launchpad, Speaker, and Mic. The PC has ROS
running on it and it will receive kinect data and converted to data equivalent to
laser scanner. This data can be used to build the map of the environment using
SLAM. The speaker/mic is used for communication between the user and robot.
The speed commands generated in ROS nodes are sent to Launchpad. Launchpad
will then process the speed commands and send appropriate PWM values to the
motor driver circuit.

After designing and discussing the working of the robot hardware, we will discuss
the detailed interfacing of each component and the firmware coding necessary for
the interfacing.

Questions
1.	 What is robot hardware designing all about?
2.	 What is H-bridge and what are its functions?
3.	 Which are the components essential for the robot navigation algorithm?
4.	 What is the criteria that has to be kept in mind while selecting robotic

components?
5.	 What are the main applications of Kinect on this robot?

Designing ChefBot Hardware

[112]

Summary
In this chapter, we have seen the features of the robot that we are going to design.
The main feature of this robot is autonomous navigation. The robot can navigate
in its surrounding by analyzing sensor readings. We went through the robot
block diagram in which we discussed the role of each block, and we then selected
appropriate components that satisfy these requirements. This chapter also suggested
some economical components to build this robot. In the next chapter, we will find
out more about actuators and their interfacing that we using on this robot.

[113]

Working with Robotic
Actuators and Wheel

Encoders
In this chapter, we will cover:

•	 Interfacing a DC Geared motor with Tiva C LaunchPad
•	 Interfacing a quadrature encoder with Tiva C LaunchPad
•	 Explanation of interfacing code
•	 Interfacing Dynamixel actuators

In the previous chapter, we have discussed the selection of hardware components
needed to build our robot. One of the important components in robot hardware
is the actuator. Actuators provide mobility to the robot. In this chapter, we are
concentrating on the different types of actuators that we are going to use in this robot
and how they can be interfaced with Tiva C LaunchPad, which is a 32-bit ARM micro
controller board from Texas Instrument that works at 80 MHz. The first actuator that
we are going to discuss is a DC geared motor with an encoder. A DC geared motor
works using direct current, and has gear reduction to reduce the shaft speed and
increase the torque of the final shaft. These kind of motors are very economic and we
can use this kind of motor in our robot prototype.

In the first section of this chapter, we will deal with the design of our robot
drive system. The Drive system of our robot consists of two DC geared motors
with encoders and a motor driver. The motor driver is controlled by Tiva C
LaunchPad. We will see interfacing of motor driver and quadrature encoder
with Tiva C Launchpad.

Working with Robotic Actuators and Wheel Encoders

[114]

In the last section, we will explore some of the latest actuators which can replace the
existing DC geared motor with encoder. If the desired robot needs more payload
and accuracy, we have switch to these kind of actuators.

Interfacing DC geared motor with Tiva C
LaunchPad
In the previous chapter, we selected a DC geared motor with an encoder from
Pololu and the embedded board from Texas Instruments called Tiva C LaunchPad.
We need the following components to interface the motor with Launchpad:

•	 Two Pololu metal gear motors 37Dx57L mm with 64 count per
revolution encoder

•	 Pololu wheel 90x10 mm and a matching hub
•	 Pololu dual VNH2SP30 motor driver carrier MD03A
•	 A sealed lead acid/Lithium Ion battery of 12 V
•	 A logic level convertor of 3.3 V to 5 V https://www.sparkfun.com/

products/11978.
•	 A Tiva C LaunchPad and its compatible interfacing wires

The following figure shows the interfacing circuit of two motors using
Pololu H-Bridge:

Motor interfacing circuit

https://www.sparkfun.com/products/11978
https://www.sparkfun.com/products/11978

Chapter 5

[115]

To interface with Launchpad, we have to connect a level shifter board in between
these two. The motor driver works in 5 V but the Launchpad works in 3.3 V, so we
have to connect a level shifter, as shown in the following figure:

Level shifter circuit

The two geared DC motors are connected to OUT1A, OUT1B, and OUT2A, OUT2B
of the motor driver. VIN(+) and GND(-) are the supply voltages of the motor. These
DC motors can work with 12 Volt supply, so we give 12 Volt as the input voltage.
The motor driver will support an input voltage range of 5.5 V to 16 V.

The control signals/input pins of motor drivers are on the left-hand side of the
driver. The first pin is 1DIAG/EN, in most cases we leave this pin disconnected.
These pins are externally pulled high in the driver board itself. The main use of this
pin is to enable or disable the H-bridge chip. It is also used to monitor the faulty
condition of the H-bridge IC. Pins 1INA and 1INB control the direction of rotation
of the motor. The 1PWM pin will switch the motor to ON and OFF state. We achieve
speed control using PWM pins. The CS pin will sense the output current. It will
output 0.13 Volts per Ampere of the output current. The VIN and GND pins give the
same input voltage that we supplied to the motor. We are not using these pins here.
The +5V(IN) and GND pins are the supply for the motor driver IC. The supply to
the motor driver and motors is different.

Working with Robotic Actuators and Wheel Encoders

[116]

The following table shows the truth table of the input and output combinations:

INA INB DIAGA/
ENA

DIAGB/ENB OUTA OUTB CS Operating mode

1 1 1 1 H H High
Imp

Brake to Vcc

1 0 1 1 H L Isense
= Iout
/ K

Clockwise (CW)

0 1 1 1 L H Isense
= Iout
/ K

Counterclockwise
(CCW)

0 0 1 1 L L High
Imp

Braker to GND

The value DIAG/EN pins are always high because this pin is externally pulled high
in the driver board itself. Using these signal combinations, we can move the robot in
any direction and by adjusting the PWM Signal, we can adjust the speed of the motor
too. This is the basic logic behind controlling a DC motor using an H-bridge circuit.

While interfacing motor to Launchpad, we may require a level shifter. This is
because the output pins of Launchpad can only supply 3.3 Volt but the motor
driver needs 5 V to trigger; so, we have to connect 3.3 V to a 5 V logic level convertor
to start working.

The two motors work in a differential drive mechanism. The following section
discusses differential drive and its operation.

Differential wheeled robot
The robot we have designed is a differential wheeled robot. In a differential
wheeled robot, the movement is based on two separately driven wheels placed on
either side of the robot's body. It can change its direction by changing the relative
rate of rotation of its wheels, and hence, doesn't require additional steering motion.
To balance the robot, a free turning wheel or caster wheels may be added.

Chapter 5

[117]

The following figure shows a typical representation of differential drive:

If the two motors are moving in the same direction, the robot will move forward or
backward. If one motor has more speed than the other, then the robot turns to the
slower motor side; so to turn left, stop the left motor and move the right motor. The
following figure shows how we connect the two motors in our robot. The two motors
are mounted on the opposite sides of the base plate and we put two casters in front
and back of the robot in order to balance it:

Top view of robot base

Next, we can program the motor controller using Launchpad according to
the truth table data. Programming is done using an IDE called Energia
(http://energia.nu/). We are programming Launchpad using a language
called Wiring (http://wiring.org.co/).

http://energia.nu/)
http://wiring.org.co/

Working with Robotic Actuators and Wheel Encoders

[118]

Installing the Energia IDE
We can download the latest version of Energia from the following link:

http://energia.nu/download/

We will discuss the installation procedure mainly on Ubuntu 14.04.2, 64-bit.
The Energia version that we will use is 0101E0013:

1.	 Download Energia for Linux 64-bit from the above link.
2.	 Extract the Energia compressed file into the Home folder of the user.
3.	 Add rules to set read and write permission to Tiva C LaunchPad. This is

essential for writing firmware to Launchpad. The following command will
add permission for USB device:
$ echo 'ATTRS{idVendor}=="1cbe", ATTRS{idProduct}=="00fd",
GROUP="users", MODE="0660"' | \

sudo tee /etc/udev/rules.d/99-tiva-launchpad.rules

4.	 After entering the command, plug Launchpad to PC.
5.	 Start Energia using the following command inside the folder:

$./energia

The following screenshot shows the Energia IDE:

http://energia.nu/download/

Chapter 5

[119]

6.	 Now, select the board by navigating to Tools | Boards | Launchpad
(Tiva C) w/tm4c123 (80MHz) as shown in the following screenshot:

7.	 Then, select the Serial Port by navigating to Tools | Serial Port | /dev/
ttyACM0 as shown in the following screenshot:

Working with Robotic Actuators and Wheel Encoders

[120]

8.	 Compile the code using the compile button. The screenshot of a successful
compilation is given here:

9.	 After successful compilation, upload the code into the board by clicking
on the Upload button. The uploaded code was an empty code which
performs no operations.

If the uploading is successful, the following message will be shown:

Chapter 5

[121]

Use the following tutorial to install Energia on Mac OS X and Windows:

•	 Refer to http://energia.nu/Guide_MacOSX.html for Mac OS X
•	 Refer to http://energia.nu/Guide_Windows.html for Windows

Interfacing code
The following code can be used to test the two motors in differential drive
configuration. This code can move the robot forward for 5 seconds and backward for
5 seconds. Then, it moves the robot to the left for 5 seconds and right for 5 seconds.
After each movement, the robot will stop for 1 second.

At the beginning of the code, we define pins for INA, INB, and PWM of the two motors
as follows:

///Left Motor Pins
#define INA_1 12
#define INB_1 13
#define PWM_1 PC_6

///Right Motor Pins
#define INA_2 5
#define INB_2 6
#define PWM_2 PC_5

The pinout for Launchpad is given at:

http://energia.nu/pin-maps/guide_tm4c123launchpad/

The following code shows the five functions to move the robot forward, backward,
left and right. The fifth function is to stop the robot. We will use the digitalWrite()
function to write a digital value to a pin. The first argument of digitalWrite() is
the pin number and second argument is the value to be written to the pin. The value
can be HIGH or LOW. We will use the analogWrite() function to write a PWM value
to a pin. The first argument of this function is the pin number and second is the
PWM value. The range of this value is from 0-255. At high PWM, the motor driver
will switch fast and have more speed. At low PWM, switching inside the motor
driver will be slow, so the motor will also be slow. Currently, we are running
at full speed.

voidmove_forward()
{
 //Setting CW rotation to and Left Motor and CCW to Right Motor
 //Left Motor

http://energia.nu/Guide_MacOSX.html
http://energia.nu/Guide_Windows.html
http://energia.nu/pin-maps/guide_tm4c123launchpad/

Working with Robotic Actuators and Wheel Encoders

[122]

digitalWrite(INA_1,HIGH);
digitalWrite(INB_1,LOW);
analogWrite(PWM_1,255);
 //Right Motor
digitalWrite(INA_2,LOW);
digitalWrite(INB_2,HIGH);
analogWrite(PWM_2,255);
}

///

voidmove_left()
{
 //Left Motor
digitalWrite(INA_1,HIGH);
digitalWrite(INB_1,HIGH);
analogWrite(PWM_1,0);
 //Right Motor
digitalWrite(INA_2,LOW);
digitalWrite(INB_2,HIGH);
analogWrite(PWM_2,255);
}

//

voidmove_right()
{
 //Left Motor
digitalWrite(INA_1,HIGH);
digitalWrite(INB_1,LOW);
analogWrite(PWM_1,255);
 //Right Motor
digitalWrite(INA_2,HIGH);
digitalWrite(INB_2,HIGH);
analogWrite(PWM_2,0);
}

//

void stop()
{
 //Left Motor

Chapter 5

[123]

digitalWrite(INA_1,HIGH);
digitalWrite(INB_1,HIGH);
analogWrite(PWM_1,0);
 //Right Motor
digitalWrite(INA_2,HIGH);
digitalWrite(INB_2,HIGH);
analogWrite(PWM_2,0);
}

///

voidmove_backward()

{
 //Left Motor
digitalWrite(INA_1,LOW);
digitalWrite(INB_1,HIGH);
analogWrite(PWM_1,255);
 //Right Motor
digitalWrite(INA_2,HIGH);
digitalWrite(INB_2,LOW);
analogWrite(PWM_2,255);
}

We first set the INA, INB pins of the two motor to the OUTPUT mode, so that we can
write HIGH or LOW values to these pins. The function pinMode() is used to set the
mode of the I/O pin. The first argument of pinMode() is the pin number and second
argument is the mode. We can set a pin as input or output. To set a pin as output, give
OUTPUT argument as the second argument; to set it as input, give INPUT as the second
argument as shown in following code. There is no need to set the PWM pin as the
output because analogWrite() writes the PWM signal without setting pinMode():

void setup()
{
 //Setting Left Motor pin as OUTPUT
pinMode(INA_1,OUTPUT);
pinMode(INB_1,OUTPUT);
pinMode(PWM_1,OUTPUT);

 //Setting Right Motor pin as OUTPUT
pinMode(INA_2,OUTPUT);
pinMode(INB_2,OUTPUT);
pinMode(PWM_2,OUTPUT);
}

Working with Robotic Actuators and Wheel Encoders

[124]

The following snippet is the main loop of the code. It will call each function,
move forward(), move_backward(), move_left(), and move_right()for 5 seconds.
After calling each function, the robot stops for 1 second.

void loop()
{
 //Move forward for 5 sec
move_forward();
delay(5000);
 //Stop for 1 sec
stop();
delay(1000);

 //Move backward for 5 sec
move_backward();
delay(5000);
 //Stop for 1 sec
stop();
delay(1000);

 //Move left for 5 sec
move_left();
delay(5000);
 //Stop for 1 sec
stop();
delay(1000);

 //Move right for 5 sec
move_right();
delay(5000);
 //Stop for 1 sec
stop();
delay(1000);
}

Interfacing quadrature encoder with
Tiva C Launchpad
The wheel encoder is a sensor attached to the motor to sense the number of rotations
of the wheel. If we know the number of rotations, we can compute the displacement,
velocity, acceleration, and angle of the wheel.

Chapter 5

[125]

For this robot, we have chosen a motor with an in-built encoder. This encoder is
a quadrature type, which can sense both the direction and speed of the motor.
Encoders use different types of sensors, such as optical and hall sensors, to detect
these parameters. This encoder uses Hall effect to sense the rotation. The quadrature
encoder has two channels, namely Channel A and Channel B. Each channel will
generate digital signals with ninety degree phase shift. The following figure shows
the wave form of a typical quadrature encoder:

Quadrature encoder waveforms

If the motor rotates clockwise, Channel A will lead Channel B, and if the
motor rotates counterclockwise, Channel B will lead Channel A. This reading
will be useful to sense the direction of rotation of the motor. The following section
discusses how we can translate the encoder output to useful measurements like
displacement and velocity.

Processing encoder data
Encoder data is a two channel pulse out with 90 degree out of phase. Using this data,
we can find the direction of rotation and how many times the motor has rotated, and
thereby find the displacement and velocity.

Some of the terms that specify encoder resolution are pulses per revolution (PPR)
or lines per revolution (LPR) and counts per revolution (CPR). PPR specifies how
many electrical pulses (0 to 1 transitions) there will be during one revolution of a
motor's final shaft. Some manufacturers use the name CPR instead of PPR. Because
each pulse will contain two edges (rising and falling) and there are two pulse channels
(A and B) with a 90 degree phase shift, the total number of edges will be four times the
number of PPR. Most quadrature receivers use the so called 4X decoding to count all
the edges from an encoder's A and B channels yielding 4X resolution compared to the
raw PPR value.

Working with Robotic Actuators and Wheel Encoders

[126]

In our motor, Pololu specifies that the CPR is 64 for the motor shaft, which
corresponds to 8400 CPR of the gearbox's output shaft. In effect, we get 8400 counts
from the gearbox output shaft when the motor's final shaft completes one revolution.
The following figure shows how we can compute the count from the encoder pulses:

Encoder waveform with count waveform

In this encoder specification, they give the count per revolution; it is calculated by
the encoder channel edge transitions. One pulse of an encoder channel corresponds
to four counts. So to get 8400 counts in our motor, the PPR will be 8400 / 4 = 2100.
From the preceding figure, we will be able to calculate the number of counts in one
revolution, but we also need to sense the direction of the movement. This is because
irrespective of whether the robot moves forward or backward, the counts that we get
will be same; so sensing the direction is important in order to decode the signal. The
following figure shows how we can decode the encoder pulses:

Chapter 5

[127]

If we observe the code pattern, we can understand that it follows the 2-bit Gray
code. A Gray code is encoding of numbers, such that adjacent numbers have a single
digit differing by 1. Gray codes (http://en.wikipedia.org/wiki/Gray_code) are
commonly used in rotary encoders for efficient coding.

We can predict the direction of rotation of a motor by state transitions. The state
transition table is given in the following figure:

State Clockwise transition Counterclockwise transition
0,0 0,1 to 0,0 1,0 to 0,0
1,0 0,0 to 1,0 1,1 to 1,0
1,1 1,0 to 1,1 0,1 to 1,1
0,1 1,1 to 0,1 0,0 to 0,1

It will be more convenient if we represent it in a state transition diagram:

After getting this Gray code, we can process the pulses using a microcontroller.
The channel pins of the motor have to be connected to the interrupt pins of the
microcontroller. So when the channel has edge transitions, it will generate an
interrupt or trigger in the pins, and if any interrupts arrives in that pin, an interrupt
service routine or simply a function will be executed inside the microcontroller
program. It can read the current state of the two pins. According to the current state
of pins and previous values, we can determine the direction of rotation and can
decide whether we have to increment or decrement the count. This is the basic logic
of encoder handling.

http://en.wikipedia.org/wiki/Gray_code

Working with Robotic Actuators and Wheel Encoders

[128]

After getting the count, we can calculate the angle of rotation (in degrees) using
Angle = (Count Value / CPR) * 360. Here, if we substitute CPR with 8400, the equation
becomes Angle = 0.04285 * Count Value, that is, for turning one degree, 24 counts have
to be received or 6 encoded channel pulses have to come.

The following figure shows the interfacing circuit of one motor encoder with
Tiva C LaunchPad:

Interfacing Motor encoder with Tiva C Launchpad

The maximum level of output pulse is between 0 V to 5 V from the encoder.
In this case, we can directly interface the encoder with Launchpad because it can
receive input of up to 5 V, or we can use a 3.3 V to 5 V level shifter like we used for
motor driver interfacing earlier.

In the next section, we will write a code in Energia to test the quadrature encoder
signal. We need to check whether we get a proper count from encoder.

Quadrature encoder interfacing code
This code will print the count of the left and right motor encoder via a serial port.
The two encoders are in 2X decoding scheme, so we will get 4200 CPR. In the first
section of the code, we are defining pins for two channel outputs of two encoders
and we are declaring the count variable for two encoders. The encoder variable uses
a volatile keyword before the variable data type.

Chapter 5

[129]

The main use of volatile is that the variable with volatile keyword will be stored
in the RAM, whereas normal variables are in CPU registers. Encoder values will
change very quickly, so using an ordinary variable will not be accurate. In order to
get accuracy, we will use volatile for encoder variables, as follows:

//Encoder pins definition

// Left encoder

#define Left_Encoder_PinA 31
#define Left_Encoder_PinB 32

volatile long Left_Encoder_Ticks = 0;

//Variable to read current state of left encoder pin
volatile bool LeftEncoderBSet;

//Right Encoder

#define Right_Encoder_PinA 33
#define Right_Encoder_PinB 34
volatile long Right_Encoder_Ticks = 0;
//Variable to read current state of right encoder pin
volatile bool RightEncoderBSet;

The following code snippet is the definition of the setup() function. In wiring
language, setup() is a built-in function used for initialization and for one-time
execution of variables and functions. Inside setup(), we initialize the serial
data communication with a baud rate of 115200 and call a user-defined function
SetupEncoders() to initialize pins of the encoders. The serial data communication is
mainly done to check the encoder count via the serial terminal.

void setup()
{
 //Init Serial port with 115200 buad rate
 Serial.begin(115200);
 SetupEncoders();
}

Working with Robotic Actuators and Wheel Encoders

[130]

The definition of SetupEncoders() is given in the code that follows. To receive
the encoder pulse, we need two pins in Launchpad as the input. Configure the
encoder pins to Launchpad as the input and activate its pull-up resistor. The
attachInterrupt () function will configure one of the encoder pins as an interrupt.
The attachInterrupt () function has three arguments. First argument is the pin
number, second argument is the Interrupt Service Routine (ISR), and the third
argument is the interrupt condition, that is, the condition in which the interrupt has
to fire ISR. In this code, we are configuring PinA of the left and right encoder pins as
the interrupt; it calls the ISR when there is a rise in the pulse.

void SetupEncoders()
{
 // Quadrature encoders
 // Left encoder
 pinMode(Left_Encoder_PinA, INPUT_PULLUP);
 // sets pin A as input
 pinMode(Left_Encoder_PinB, INPUT_PULLUP);
 // sets pin B as input
 attachInterrupt(Left_Encoder_PinA, do_Left_Encoder, RISING);

 // Right encoder
 pinMode(Right_Encoder_PinA, INPUT_PULLUP);
 // sets pin A as input
 pinMode(Right_Encoder_PinB, INPUT_PULLUP);
 // sets pin B as input

 attachInterrupt(Right_Encoder_PinA, do_Right_Encoder, RISING);
}

The following code is the built-in loop() function in wiring language.
The loop() function is an infinite loop where we put our main code. In this code,
we call the Update_Encoders() function to print the encoder value continuously
through serial terminal.

void loop()
{
 Update_Encoders();
}

Chapter 5

[131]

The following code is the function definition of the Update_Encoders() function.
It prints two encoder values in a line with a starting character "e", and the values
are separated by tab spaces. The Serial.print() function is a built-in function
that will print the character/string given as the argument.

void Update_Encoders()
{
 Serial.print("e");
 Serial.print("\t");
 Serial.print(Left_Encoder_Ticks);
 Serial.print("\t");
 Serial.print(Right_Encoder_Ticks);
 Serial.print("\n");
 }

The following code is the ISR definition of the left and right encoders. When a rising
edge is detected on each of the pins, one of the ISRs will be called. The current
interrupt pins are PinA of each of the encoders. After getting the interrupt, we can
assume that the rising PinA has a higher value state, so there is no need to read that
pin. Read PinB of both the encoders and store the pin state to LeftEncoderBSet
or RightEncoderBSet. The current state is compared to the previous state of PinB
and can detect the direction and decide whether the count has to be incremented or
decremented according to the state transition table.

void do_Left_Encoder()
{
 LeftEncoderBSet = digitalRead(Left_Encoder_PinB);
 // read the input pin
 Left_Encoder_Ticks -= LeftEncoderBSet ? -1 : +1;
}

void do_Right_Encoder()
{
 RightEncoderBSet = digitalRead(Right_Encoder_PinB);
 // read the input pin
 Right_Encoder_Ticks += RightEncoderBSet ? -1 : +1;
}

Upload the sketch and view the output using the serial monitor in Energia. Navigate
to Tools | Serial monitor. Move the two motors manually and you can see the count
changing. Set the baud rate in the serial monitor, which is the same as initialized in
the code; in this case, it is 115200.

Working with Robotic Actuators and Wheel Encoders

[132]

The output will look like this:

If we want to upgrade the robot to high accuracy and payload, we have to
think about high quality actuators such as Dynamixel. Dynamixels are intelligent
actuators, which have in-built PID control and monitoring of the servo and encoder
parameters, such as torque, position, and so on.

Working with Dynamixel actuators
Dynamixel is a kind of networked actuator for robots developed by Korean
manufacture ROBOTIS. It is widely used by companies, universities, and hobbyists
due to its versatile expansion capability, power feedback function, position, speed,
internal temperature, input voltage, and so on.

The Dynamixel servos can be connected in a daisy chain; it is a method of connecting
device in a serial fashion, that is, connecting one device to another through the
connected devices, and can control all the connected servos from one controller.
Dynamixel servos communicate via RS485 or TTL. The list of available Dynamixel
servos is given at http://www.robotis.com/xe/dynamixel_en.

http://www.robotis.com/xe/dynamixel_en

Chapter 5

[133]

The interfacing of Dynamixel is very easy. Dynamixel comes with a controller called
USB2Dyanmixel, which will convert USB to Dynamixel compatible TTL/RS485
levels. The following figure shows the interfacing diagram of Dynamixel:

ROBOTIS provides Dynamixel SDK for accessing motor registers; we can read and
write values to Dynamixel registers and retrieve data such as position, temperature,
voltage, and so on.

The instructions to set USB2Dynamixel and Dynamixel SDK are
given at support.robotis.com/en/.

Dynamixel can be programed using Python libraries. One of the Python libraries for
handling Dynamixel servos is pydynamixel. This package is available for Windows
and Linux. Pydynamixel will support RX, MX, and EX series servos.

We can download the pydynamixel Python package from https://pypi.python.
org/pypi/dynamixel/.

Download the package and extract it to the home folder. Open a terminal/DOS
prompt and execute the following command:

sudo python setup.py install

After installing the package, we can try the following Python example, which will
detect the servo attached to the USB2Dynamixel and write some random position to
the servo. This example will work with RX and MX servos.

#!/usr/bin/env python

The following code will import the necessary Python modules required for this
example. This includes Dynamixel Python modules too:

import os
import dynamixel
import time
import random

support.robotis.com/en/
https://pypi.python.org/pypi/dynamixel/
https://pypi.python.org/pypi/dynamixel/

Working with Robotic Actuators and Wheel Encoders

[134]

The following code defines the main parameters needed for Dynamixel
communication parameters.The nServos variable denoted number of Dynamixel
servos connected to the bus. The portName variable indicates the serial port of
USB2Dynamixel to which Dynamixel servos are connected. The baudRate variable is
the communication speed of USB2Dynamixel and Dynamixel.

The number of Dynamixels on our bus.
nServos = 1

Set your serial port accordingly.
if os.name == "posix":
 portName = "/dev/ttyUSB0"
else:
 portName = "COM6"

Default baud rate of the USB2Dynamixel device.
baudRate = 1000000

The following code is the Dynamixel Python function to connect to Dynamixel
servos. If it is connected, the program will print it and scan the communication
bus to find the number of servos starting from ID 1 to 255. The Servo ID is the
identification of each servo. We are given nServos as 1, so it will stop scanning after
getting one servo on the bus:

Connect to the serial port
print "Connecting to serial port", portName, '...',
serial = dynamixel.serial_stream.SerialStream(port=portName,
baudrate=baudRate, timeout=1)
print "Connected!"
net = dynamixel.dynamixel_network.DynamixelNetwork(serial)
net.scan(1, nServos)

The following code will append the Dynamixel ID and the servo object to the
myActuators list. We can write servo values to each servo using servo id and
servo object. We can use the myActuators list for further processing:

A list to hold the dynamixels
myActuators = list()
print myActuators

This will create a list for storing dynamixel actuators details.

Chapter 5

[135]

print "Scanning for Dynamixels...",
for dyn in net.get_dynamixels():
 print dyn.id,
 myActuators.append(net[dyn.id])
print "...Done"

The following code will write random positions from 450 to 600 to each Dynamixel
actuator that is available on the bus. The range of positions in Dynamixel is 0 to
1023. This will set the servo parameters such as speed, torque,torque_limt,
max_torque, and so on:

Set the default speed and torque
for actuator in myActuators:
 actuator.moving_speed = 50
 actuator.synchronized = True
 actuator.torque_enable = True
 actuator.torque_limit = 800
 actuator.max_torque = 800

The following code will print the current position of the current actuator:

Move the servos randomly and print out their current positions
while True:
 for actuator in myActuators:
 actuator.goal_position = random.randrange(450, 600)
 net.synchronize()

The following code will read all data from actuators:

 for actuator in myActuators:
 actuator.read_all()
 time.sleep(0.01)

 for actuator in myActuators:
 print actuator.cache[dynamixel.defs.REGISTER['Id']], actuator.
cache[dynamixel.defs.REGISTER['CurrentPosition']]

 time.sleep(2)

Working with Robotic Actuators and Wheel Encoders

[136]

Questions
1.	 What is the H-Bridge circuit?
2.	 What is a quadrature encoder?
3.	 What is the 4X encoding scheme?
4.	 How do we calculate displacement from encoder data?
5.	 What are the features of the Dynamixel actuator?

Summary
In this chapter we have discussed the interfacing of motor that we are using in our
robot. We have seen motor and encoder interfacing with a controller board called
Tiva C LaunchPad. We have discussed the controller code for interfacing motor and
encoder. In the future, if the robot requires high accuracy and torque, we have seen
Dynamixel servos that can substitute current DC motors. In the next chapter, we will
see different kinds of sensors that can be used in robots and its interfacing.

[137]

Working with Robotic
Sensors

In the previous chapter, we have seen the interfacing of some actuators for our
service robot. The next important section that we need to cover is about the robotic
sensors used in this robot.

We are using sensors in this robot to find the distance from an obstacle, to get
the robot odometry data, and for robotic vision and acoustics.

The sensors are ultrasonic distance sensors, or IR proximity sensors are used to
detect the obstacles and to avoid collisions. The vision sensors such as Kinect to
acquire 3D data of the environment, for visual odometry; object detection, for
collision avoidance; and audio devices such as speakers and mics, for speech
recognition and synthesis.

In this chapter, we are not including vision and audio sensors interfacing because
in the upcoming chapter we will discuss them and their interfacing in detail.

Working with ultrasonic distance sensors
One of the most important features of a mobile robot is navigation. An ideal navigation
means a robot can plan its path from its current position to the destination and can
move without any obstacles. We use ultrasonic distance sensors in this robot for
detecting objects in close proximity that can't be detected using the Kinect sensor.
A combination of Kinect and ultrasonic sound sensors provides ideal collision
avoidance for this robot.

Working with Robotic Sensors

[138]

Ultrasonic distance sensors work in the following manner. The transmitter will send
an ultrasonic sound which is not audible to human ears. After sending an ultrasonic
wave, it will wait for an echo of the transmitted wave. If there is no echo, it means
there are no obstacles in front of the robot. If the receiving sensor receives an echo, a
pulse will be generated on the receiver, and it can calculate the total time the wave
will take to travel to the object and return to the receiver sensors. If we get this time,
we can compute the distance to the obstacle using the following formula:

Speed of Sound * Time Passed /2 = Distance from Object.

Here, the speed of sound can be taken as 340 m/s.

Most of the ultrasonic range sensors have a distance range from 2 cm to 400 cm.
In this robot, we use a sensor module called HC-SR04. We can see how to interface
HC-SR04 with Tiva C LaunchPad to get the distance from the obstacles.

Interfacing HC-SR04 to Tiva C LaunchPad
The following figure is the interfacing circuit of the HC-SR04 ultrasonic sound
sensor with Tiva C LaunchPad:

Interfacing diagram of Launchpad and HC-SR04

Chapter 6

[139]

The working voltage of the ultrasonic sensor is 5 V and the input/output of this sensor
is also 5 Volt, so we need a level shifter on the Trig and Echo pins for the interfacing
into the 3.3 V level Launchpad. In the level shifter, we need to apply high voltage, that
is, 5 Volt, and low voltage, that is, 3.3 Volt, as shown in the figure, to switch from one
level to another level. Trig and Echo pins are connected on the high voltage side of the
level shifter and the low voltage side pins are connected to Launchpad. The Trig pin
and Echo pin are connected to the 10th and 9th pins of Launchpad. After interfacing
the sensor, we can see how to program the two I/O pins.

Working of HC-SR04
The timing diagram of waveform on each pin is shown in the following diagram.
We need to apply a short 10 µs pulse to the trigger input to start the ranging and then
the module will send out an eight cycle burst of ultrasound at 40 KHz and raise its
echo. The echo is a distance object that is pulse width and the range in proportion.
You can calculate the range through the time interval between sending trigger signals
and receiving echo signals using the following formula:

Range = high level time of echo pin output * velocity (340 M/S) / 2.

It will be better to use a delay of 60 ms before each trigger, to avoid overlapping
between the trigger and echo:

Working with Robotic Sensors

[140]

Interfacing code of Tiva C LaunchPad
The following Energia code for Launchpad reads values from the ultrasound sensor
and monitors the values through a serial port.

The following code defines the pins in Launchpad to handle ultrasonic echo and
trigger pins and also defines variables for the duration of the pulse and the distance
in centimeters:

const int echo = 9, Trig = 10;
long duration, cm;

The following code snippet is the setup() function. The setup() function is called
when a sketch/code starts. Use this to initialize variables, pin modes, start using
libraries, and so on. The setup function will only run once, after each power up or
reset of the Launchpad board. Inside setup(), we initialize serial communication
with a baud rate of 115200 and setup the mode of ultrasonic handling pins by calling
a function SetupUltrasonic();

void setup()
{

 //Init Serial port with 115200 buad rate
 Serial.begin(115200);
 SetupUltrasonic();
}

The following is the setup function for the ultrasonic sensor; it will configure the
Trigger pin as OUTPUT and the Echo pin as INPUT. The pinMode() function is used
to set the pin as INPUT or OUTPUT.

void SetupUltrasonic()
{
 pinMode(Trig, OUTPUT);
 pinMode(echo, INPUT);

}

After creating a setup() function, which initializes and sets the initial values, the
loop() function does precisely what its name suggests, and loops consecutively,
allowing your program to change and respond. Use it to actively control the
Launchpad board.

Chapter 6

[141]

The main loop of this is in the following code. This function is an infinite loop
and calls the Update_Ultra_Sonic() function to update and print the ultrasonic
readings through a serial port:

void loop()
{
 Update_Ultra_Sonic();
 delay(200);
}

The following code is the definition of the Update_Ultra_Sonic() function.
This function will do the following operations. First, it will take the trigger pin to
the LOW state for 2 microseconds and HIGH for 10 microseconds. After 10
microseconds, it will again return the pin to the LOW state. This is according to the
timing diagram. We already saw that 10 µs is the trigger pulse width.

After triggering with 10 µs, we have to read the time duration from the Echo pin.
The time duration is the time taken for the sound to travel from the sensor to the
object and from the object to the sensor receiver. We can read the pulse duration by
using the pulseIn() function. After getting the time duration, we can convert the
time into centimeters by using the microsecondsToCentimeters() function,
as shown in the following code:

void Update_Ultra_Sonic()
{
 digitalWrite(Trig, LOW);
 delayMicroseconds(2);
 digitalWrite(Trig, HIGH);
 delayMicroseconds(10);
 digitalWrite(Trig, LOW);

 duration = pulseIn(echo, HIGH);
 // convert the time into a distance
 cm = microsecondsToCentimeters(duration);

 //Sending through serial port
 Serial.print("distance=");
 Serial.print("\t");
 Serial.print(cm);
 Serial.print("\n");

}

Working with Robotic Sensors

[142]

The following code is the conversion function from microseconds to distance in
centimeters. The speed of sound is 340 m/s, that is, 29 microseconds per centimeter.
So we get the total distance by dividing the total microseconds by 29/2:

long microsecondsToCentimeters(long microseconds)
{
return microseconds / 29 / 2;
}

After uploading the code, open the serial monitor from the Energia menu under
Tools | Serial Monitor and change the baud rate into 115200. You can see the
values from the ultrasonic sensor, like this:

Output of the energia serial monitor

Interfacing Tiva C LaunchPad with Python
In this section, we can see how to connect Tiva C LaunchPad with Python to receive
data from Launchpad.

The PySerial module can be used for interfacing Launchpad to Python. The detailed
documentation of PySerial and its installation procedure for Window, Linux, and OS
X is on the following link:

http://pyserial.sourceforge.net/pyserial.html

http://pyserial.sourceforge.net/pyserial.html

Chapter 6

[143]

PySerial is available in the Ubuntu package manager and it can be easily installed
in Ubuntu using the following command in terminal:

$ sudo apt-get install python-serial

After installing the python-serial package, we can write a python code to
interface Launchpad. The interfacing code is given in following section.

The following code imports the python serial module and the sys module.
The serial module handles the serial ports of Launchpad and performs operations
such as reading, writing, and so on. The sys module provides access to some
variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available:

#!/usr/bin/env python
import serial
import sys

When we plug Launchpad to the computer, the device registers on the OS as a
virtual serial port. In Ubuntu, the device name looks like /dev/ttyACMx. Where x
can be a number, if there is only one device, it will probably be 0. To interact with
the Launchpad, we need to handle this device file only.

The following code will try to open the serial port /dev/ttyACM0 of Launchpad
with a baud rate of 115200. If it fails, it will print Unable to open serial port.

try:
 ser = serial.Serial('/dev/ttyACM0',115200)
except:
 print "Unable to open serial port"

The following code will read the serial data until the serial character becomes
a new line ('\n') and prints it on the terminal. If we press Ctrl + C on the keyboard,
to quit the program, it will exit by calling sys.exit(0).

while True:
 try:
 line = ser.readline()
 print line
 except:
 print "Unable to read from device"
 sys.exit(0)

Working with Robotic Sensors

[144]

After saving the file, change the permission of the file to executable using the
following command:

$ sudo chmod +X script_name

$./script_name

The output of the script will look like this:

Working with the IR proximity sensor
Infrared sensors are another method to find obstacles and the distance from the
robot. The principle of infrared distance sensors is based on the infrared light that
is reflected from a surface when hitting an obstacle. An IR receiver will capture the
reflected light and the voltage is measured based on the amount of light received.

One of the popular IR range sensors is Sharp GP2D12, the product link is as follows:

http://www.robotshop.com/en/sharp-gp2y0a21yk0f-ir-range-sensor.html

The following figure shows the Sharp GP2D12 sensor:

http://www.robotshop.com/en/sharp-gp2y0a21yk0f-ir-range-sensor.html

Chapter 6

[145]

The sensor sends out a beam of IR light and uses triangulation to measure the
distance. The detection range of the GP2D12 is between 10 cm and 80 cm. The beam
is 6 cm wide at a distance of 80 cm. The transmission and reflection of the IR light
sensor is illustrated in the following figure:

On the left of the sensor is an IR transmitter, which continuously sends IR radiation,
after hitting into some objects, the IR light will reflect and it will be received by the
IR receiver. The interfacing circuit of the IR sensor is shown here:

Working with Robotic Sensors

[146]

The analog out pin Vo can be connected to the ADC pin of Launchpad.
The interfacing code of the Sharp distance sensor with the Tiva C Launchpad
is given further in this section. In this code, we select the 18th pin of Launchpad and
set it to the ADC mode and read the voltage levels from the Sharp distance sensor.
The range equation of the GP2D12 IR sensor is given as follows:

Range = (6787 / (Volt - 3)) – 4

Here, Volt is the analog voltage value from ADC of the Vout pin.

In this first section of the code, we set the 18th pin of Tiva C LaunchPad as the input
pin and start a serial communication at a baud rate of 115200:

int IR_SENSOR = 18; // Sensor is connected to the analog A3
int intSensorResult = 0; //Sensor result
float fltSensorCalc = 0; //Calculated value

void setup()
{
Serial.begin(115200); // Setup communication with computer
 to present results serial monitor
}

In the following section of code, the controller continuously reads the analog pin and
converts it to the distance value in centimeters:

void loop()
{

// read the value from the ir sensor
intSensorResult = analogRead(IR_SENSOR); //Get sensor value

//Calculate distance in cm according to the range equation
fltSensorCalc = (6787.0 / (intSensorResult - 3.0)) - 4.0;

Serial.print(fltSensorCalc); //Send distance to computer
Serial.println(" cm"); //Add cm to result
delay(200); //Wait
}

Chapter 6

[147]

This is the basic code to interface a Sharp distance sensor. There are some drawbacks
with the IR sensors. Some of them are as follows:

•	 We can't use them in direct or indirect sunlight, so it's difficult to use them in
an outdoor robot

•	 They may not work if an object is reflective
•	 The range equation only works within the range

In the next section, we can discuss IMU and its interfacing with Tiva C LaunchPad.
IMU can give the odometry data and it can be used as the input to navigation
algorithms.

Working with Inertial Measurement Unit
An Inertial Measurement Unit (IMU) is an electronic device that measures
velocity, orientation, and gravitational forces using a combination of accelerometers,
gyroscopes, and magnetometers. An IMU has a lot of applications in robotics; some
of the applications are in balancing of Unmanned Aerial Vehicles (UAVs) and
robot navigation.

In this section, we discuss the role of IMU in mobile robot navigation and some
of the latest IMUs on the market and its interfacing with Launchpad.

Inertial Navigation
An IMU provides acceleration and orientation relative to inertial space, if you
know the initial position, velocity, and orientation, you can calculate the velocity by
integrating the sensed acceleration and the second integration gives the position. To
get the correct direction of the robot, the orientation of the robot is required; this can
be obtained by integrating sensed angular velocity from gyroscope.

Working with Robotic Sensors

[148]

The following figure illustrates an inertial navigation system, which will convert
IMU values to odometric data:

The values we get from the IMU are converted into navigational information using
navigation equations and feeding into estimation filters such as the Kalman filter.
The Kalman filter is an algorithm that estimates the state of a system from the
measured data (http://en.wikipedia.org/wiki/Kalman_filter). The data from
Inertial Navigation System (INS) will have some drift because of the error from
the accelerometer and gyroscope. To limit the drift, an INS is usually aided by other
sensors that provide direct measurements of the integrated quantities. Based on the
measurements and sensor error models, the Kalman filter estimates errors in the
navigation equations and all the colored sensors' errors. The following figure shows
a diagram of an aided inertial navigation system using the Kalman filter:

http://en.wikipedia.org/wiki/Kalman_filter

Chapter 6

[149]

Along with the motor encoders, the value from the IMU can be taken as the
odometer value and it can be used for dead reckoning, the process of finding the
current position of a moving object by using a previously determined position.

In the next section, we are going to see one of the most popular IMUs from
InvenSense called MPU 6050.

Interfacing MPU 6050 with Tiva C LaunchPad
The MPU-6000/MPU-6050 family of parts are the world's first and only 6-axis
motion tracking devices designed for the low power, low cost, and high performance
requirements of smart phones, tablets, wearable sensors, and robotics.

The MPU-6000/6050 devices combine a 3-axis gyroscope and 3-axis accelerometer
on the silicon die together with an onboard digital motion processor capable of
processing complex 9-axis motion fusion algorithms. The following figure shows
the system diagram of MPU 6050 and breakout of MPU 6050:

The breakout board of MPU 6050 is shown in the following figure and it can be
purchased from the following link:

https://www.sparkfun.com/products/110286

https://www.sparkfun.com/products/110286

Working with Robotic Sensors

[150]

The connection from Launchpad to MPU 6050 is given in the following table.
The remaining pins can be left disconnected:

Launchpad pins MPU6050 pins
+3.3V VCC/VDD
GND GND
PD0 SCL
PD1 SDA

The following figure shows the interfacing diagram of MPU 6050 and Tiva C
Launchpad:

The MPU 6050 and Launchpad communicate using the I2C protocol, the supply
voltage is 3.3 Volt and it is taken from Launchpad.

Setting up the MPU 6050 library in Energia
The interfacing code of Energia is discussed in this section. The interfacing code
uses the https://github.com/jrowberg/i2cdevlib/zipball/master library
for interfacing MPU 6050.

https://github.com/jrowberg/i2cdevlib/zipball/master

Chapter 6

[151]

Download the ZIP file from the preceding link and navigate to Preference from
File | Preference in Energia, as shown in the following screenshot:

Go to Sketchbook location under Preferences, as seen in the preceding screenshot,
and create a folder called libraries. Extract the files inside the Arduino folder
inside the ZIP file to the sketchbook/libraries location. The Arduino packages in
this repository are also compatible with Launchpad. The extracted files contain the
I2Cdev, Wire, and MPU6050 packages that are required for the interfacing of the MPU
6050 sensor. There are other sensors packages that are present in the libraries
folder but we are not using them now.

The preceding procedure is done in Ubuntu, but it is the same for Windows and
Mac OS X.

Download the ZIP file from the preceding link and navigate to
 from

Working with Robotic Sensors

[152]

Interfacing code of Energia
This code is used to read the raw value from MPU 6050 to Launchpad, it uses a
MPU 6050 third-party library that is compatible with Energia IDE. The following
are the explanations of each block of the code.

In this first section of code, we include the necessary headers for interfacing MPU
6050 to Launchpad such as 12C, Wire and the MPU6050 library and create an object
of MPU6050 with the name accelgyro. The MPU6050.h library contains a class
named MPU6050 to send and receive data to and from the sensor:

#include "Wire.h"

#include "I2Cdev.h"
#include "MPU6050.h"

MPU6050 accelgyro;

In the following section, we start the I2C and serial communication to communicate
with MPU 6050 and print sensor values through the serial port. The serial
communication baud rate is 115200 and Setup_MPU6050() is the custom function
to initialize the MPU 6050 communication:

void setup()
{

 //Init Serial port with 115200 buad rate
 Serial.begin(115200);
 Setup_MPU6050();
}

The following section is the definition of the Setup_MPU6050() function. The Wire
library allows you to communicate with the I2C devices. MPU 6050 can communicate
using I2C. The Wire.begin()function will start the I2C communication between
MPU 6050 and Launchpad; also, it will initialize the MPU 6050 device using the
initialize() method defined in the MPU6050 class. If everything is successful, it
will print connection successful, otherwise it will print connection failed:

void Setup_MPU6050()
{
 Wire.begin();

 // initialize device

Chapter 6

[153]

 Serial.println("Initializing I2C devices...");
 accelgyro.initialize();

 // verify connection
 Serial.println("Testing device connections...");
 Serial.println(accelgyro.testConnection() ? "MPU6050 connection
successful" : "MPU6050 connection failed");
}

The following code is the loop() function, which continuously reads the sensor
value and prints its values through the serial port: The Update_MPU6050() custom
function is responsible for printing the updated value from MPU 6050:

void loop()
{

 //Update MPU 6050
 Update_MPU6050();

}

The definition of Update_MPU6050() is given as follows. It declares six variables to
handle the accelerometer and gyroscope value in 3-axis. The getMotion6() function
in the MPU 6050 class is responsible for reading the new values from the sensor.
After reading, it will print via the serial port:

void Update_MPU6050()
{

 int16_t ax, ay, az;
 int16_t gx, gy, gz;

 // read raw accel/gyro measurements from device
 accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

 // display tab-separated accel/gyro x/y/z values
 Serial.print("i");Serial.print("\t");
 Serial.print(ax); Serial.print("\t");
 Serial.print(ay); Serial.print("\t");
 Serial.print(az); Serial.print("\t");
 Serial.print(gx); Serial.print("\t");
 Serial.print(gy); Serial.print("\t");
 Serial.println(gz);
 Serial.print("\n");
}

Working with Robotic Sensors

[154]

The output from the serial monitor is shown here:

We can read these values using the python code that we used for ultrasonic.
The following is the screenshot of the terminal when we run the python script:

Chapter 6

[155]

Interfacing MPU 6050 to Launchpad with
the DMP support using Energia
In this section, we will see the interfacing code of MPU 6050 by activating DMP,
which can give us direct orientation values in quaternion or yaw, pitch, and roll.
This value can be directly applied to our robotic application too.

The following section of code imports all the necessary header files to interface and
create an MPU6050 object like the previous code:

#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"

//Creating MPU6050 Object
MPU6050 accelgyro(0x68);

The following code initializes and declares variables to handle DMP:

//DMP options
//Set true if DMP initialization was successful
bool dmpReady = false;

//Holds actual interrupt status byte from MPU
uint8_t mpuIntStatus;

//return status after each device operation
uint8_t devStatus;

//Expected DMP packet size
uint16_t packetSize;

//count of all bytes currently in FIFO
uint16_t fifoCount;

//FIFO storate buffer
uint8_t fifoBuffer[64];

//Output format will be in quaternion
#define OUTPUT_READABLE_QUATERNION

Working with Robotic Sensors

[156]

The following code declares various variables to handle orientation variables:

//quaternion variable
Quaternion q;

The following function is an interrupt service routine, which is called when MPU
6050 INT pin generates an interrupt:

//Interrupt detection routine for DMP handling
volatile bool mpuInterrupt = false;
// indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
 mpuInterrupt = true;
}

The following code is the definition of the setup() function. It initializes the serial
port with a baud rate of 115200 and calls the Setup_MPU6050() function:

void setup()
{
 //Init Serial port with 115200 buad rate
 Serial.begin(115200);
 Setup_MPU6050();
}

The following code is the definition of the Setup_MPU6050() function. It will
initialize MPU 6050 and checks whether it's initialized or not. If it's initialized,
it will initialize DMP by calling the Setup_MPU6050_DMP() function:

void Setup_MPU6050()
{
 Wire.begin();
 // initialize device
 Serial.println("Initializing I2C devices...");
 accelgyro.initialize();

 // verify connection
 Serial.println("Testing device connections...");
 Serial.println(accelgyro.testConnection() ?
 "MPU6050 connection successful" : "MPU6050
 connection failed");

 //Initialize DMP in MPU 6050
 Setup_MPU6050_DMP();
}

Chapter 6

[157]

The following code is the definition of the Setup_MPU6050_DMP() function.
It initializes DMP and sets offset in three axis. If DMP is initialized, it will start
functioning and configure the PF_0/PUSH2 pin as an interrupt. When the data is
ready on the MPU 6050 buffer, an interrupt will be generated, which will read
values from the bus:

//Setup MPU 6050 DMP
void Setup_MPU6050_DMP()
{

 //DMP Initialization
 devStatus = accelgyro.dmpInitialize();
 accelgyro.setXGyroOffset(220);
 accelgyro.setXGyroOffset(76);
 accelgyro.setXGyroOffset(-85);
 accelgyro.setXGyroOffset(1788);
 if(devStatus == 0){

 accelgyro.setDMPEnabled(true);
 pinMode(PUSH2,INPUT_PULLUP);
 attachInterrupt(PUSH2, dmpDataReady, RISING);
 mpuIntStatus = accelgyro.getIntStatus();
 dmpReady = true;
 packetSize = accelgyro.dmpGetFIFOPacketSize();

}

else{

//Do nothing
;
 }
}

The following code is the definition the of the loop() function. It will call
Update_MPU6050(), which will read buffer values and print it on the serial terminal:

void loop()
{
 //Update MPU 6050
 Update_MPU6050();
}

Working with Robotic Sensors

[158]

This is the definition of Update_MPU6050(), which will call the
Update_MPU6050_DMP() function:

void Update_MPU6050()
{
 Update_MPU6050_DMP();
}

The following function reads from the FIFO register of MPU 6050 and the
quaternion value gets printed on the serial terminal:

//Update MPU6050 DMP functions
void Update_MPU6050_DMP()
{

 //DMP Processing
 if (!dmpReady) return;
 while (!mpuInterrupt && fifoCount < packetSize)
 {
 ;
 }

 mpuInterrupt = false;
 mpuIntStatus = accelgyro.getIntStatus();

 //get current FIFO count
 fifoCount = accelgyro.getFIFOCount();

 if ((mpuIntStatus & 0x10) || fifoCount > 512) {
 // reset so we can continue cleanly
 accelgyro.resetFIFO();
 }

else if (mpuIntStatus & 0x02) {
 // wait for correct available data length,
 should be a VERY short wait

 while (fifoCount < packetSize) fifoCount =
 accelgyro.getFIFOCount();

 // read a packet from FIFO
 accelgyro.getFIFOBytes(fifoBuffer, packetSize);

Chapter 6

[159]

 // track FIFO count here in case there is > 1
 packet available
 // (this lets us immediately read more without
 waiting for an interrupt)
 fifoCount -= packetSize;

 #ifdef OUTPUT_READABLE_QUATERNION

 // display quaternion values in easy matrix form: w x y z
 accelgyro.dmpGetQuaternion(&q, fifoBuffer);

 Serial.print("i");Serial.print("\t");
 Serial.print(q.x); Serial.print("\t");
 Serial.print(q.y); Serial.print("\t");
 Serial.print(q.z); Serial.print("\t");
 Serial.print(q.w);
 Serial.print("\n");
 #endif
 }
}

The output from the serial monitor is shown in the following screenshot. The serial
monitor shows the quaternion values of x, y, z, and w starting with an "i" character:

Working with Robotic Sensors

[160]

We can also use the Python script to view these values. The output of the Python
script is shown in the following screenshot:

In the next chapters, we will see some of the vision and audio sensors that can be
used on this robot and its interfacing with Python.

Questions
1.	 What are ultrasonic sensors and how do they work?
2.	 How do you calculate distance from the ultrasonic sensor?
3.	 What is the IR proximity sensor and how does it work?
4.	 How do you calculate distance from the IR sensor?
5.	 What is IMU and how do you get the odometric data?
6.	 What is the Aided Inertial Navigation system?
7.	 What are the main features of MPU 6050?

Chapter 6

[161]

Summary
In this chapter, we have seen some robotic sensors, which can be used in our robot.
The sensors we discussed are ultrasonic distance sensors, IR proximity sensors, and
IMUs. These three sensors help in the navigation of the robot. We also discussed
the basic code to interface these sensors to Tiva C LaunchPad. We will see more on
vision and audio sensors interfacing using Python in the next chapter.

[163]

Programming Vision Sensors
Using Python and ROS

In the previous chapter, we have seen some of the robotic sensors used in our robot
and its interfacing with the Launchpad board. In this chapter, we will mainly discuss
vision sensors and its interface used in our robot.

The robot we are designing will have a 3D sensor and we can interface it with vision
libraries such as OpenCV, OpenNI, and Point Cloud Library (PCL). Some of the
applications of the 3D vision sensor in our robot are autonomous navigation, obstacle
avoidance, object detection, people tracking, and so on.

We will also discuss the interfacing of vision sensors and image processing libraries
with ROS. In the last section of the chapter, we will see a navigational algorithm
for our robot called SLAM (Simultaneous Localization and Mapping) and its
implementation using a 3D sensor, ROS, and image processing libraries.

In the first section, we will see some 2D and 3D vision sensors available on the
market that we will use in our robot.

List of robotic vision sensors and image
processing libraries
A 2D vision sensor or an ordinary camera delivers 2D image frames of the
surroundings, whereas a 3D vision sensor delivers 2D image frames and an
additional parameter called depth of each image point. We can find the x, y,
and z distance of each point from the 3D sensor with respect to the sensor axis.

There are quite a few vision sensors available on the market. Some of the 2D and
3D vision sensors that can be used in our robot are mentioned in this chapter.

Programming Vision Sensors Using Python and ROS

[164]

The following figure shows the latest 2D vision sensor called Pixy/CMU cam 5
(http://www.cmucam.org/), which is able to detect color objects with high speed
and accuracy and can be interfaced to an Arduino board. Pixy can be used for
fast object detection and the user can teach which object it needs to track. Pixy
module has a CMOS sensor and NXP (http://www.nxp.com/) processor for
image processing:

Pixy/CMU Cam 5

The commonly available 2D vision sensors are webcams. They contain a CMOS
sensor and USB interface, but there is no inbuilt processing for the object detection.
The following image shows a popular webcam from Logitech that can capture
pictures of up to 5 megapixel resolution and HD videos:

http://www.cmucam.org/
http://www.nxp.com/

Chapter 7

[165]

Logitech HD Cam

We can take a look at some of the 3D vision sensors available on the market. Some of
the popular sensors are Kinect, Asus Xtion Pro, and Carmine.

Kinect

Kinect is a 3D vision sensor used along with the Microsoft Xbox 360 game console.
It mainly contains an RGB camera, an infrared projector, a depth sensor, a microphone
array, and a motor for tilt. The RGB and depth camera capture images at a resolution
of 640 x 480 at 30 Hz. The RGB camera captures 2D color images, whereas the depth
camera captures monochrome depth images. Kinect has a depth sensing range from
0.8 m to 4 m.

Some of the applications of Kinect are 3D motion capture, skeleton tracking, face
recognition, and voice recognition.

Programming Vision Sensors Using Python and ROS

[166]

Kinect can be interfaced to PC using the USB 2.0 interface and programmed using
Kinect SDK, OpenNI, and OpenCV. Kinect SDK is only available for Windows
platforms and is developed and supplied by Microsoft. The other two libraries are
open source and available for all platforms. The Kinect we are using here is the first
version; the latest versions of Kinect only support Kinect SDK running on Windows.

Asus Xtion Pro

Asus Xtion Pro is a 3D sensor designed for PC-based motion sensing applications.
Xtion Pro is only for 3D sensing and it doesn't have any sound sensing facilities. It
has an infrared projector and a monochrome CMOS sensor to capture the infrared
data. Xtion Pro communicates to the PC via the USB 2.0 interface. Xtion can be
powered from the USB itself and can calculate a sense depth from 0.8 m to 3.5 m
from the sensor.

The applications of Kinect and Xtion Pro are the same except for voice recognition.
It will work in Windows, Linux, and Mac. We can develop applications in Xtion Pro
using OpenNI and OpenCV.

PrimeSense Carmine

Chapter 7

[167]

The Prime Sense team developed the Microsoft Kinect 3D vision system. Later,
they developed their own 3D vision sensor called Carmine. The technology
behind Carmine is similar to Kinect. It works with an IR projector and a depth
image CMOS sensor. The following figure shows the block diagram of Carmine:

Carmine block diagram

Similar to Kinect, Carmine has an RGB CMOS sensor, a depth image CMOS, and an
IR light source. It also has an array of microphones for voice recognition. All sensors
are interfaced in System On Chip (SOC). Interfacing and powering is performed
through USB.

Carmine can capture RGB and depth frames in 640 x 480 resolution and can sense
depth from 0.35 m to 3.5 m. Compared to Kinect, the advantages are small power
consumption, small form factor, and good depth sensing range.

Carmine can be interfaced to a PC and it will support Windows, Linux, Mac, and
Android platforms. Carmine is supported by OpenNI; developers can program the
device using OpenNI and its wrapper libraries.

Apple Inc bought Prime Sense in November 2013. You can buy Carmine at the
following link:

http://www.amazon.com/dp/B00KO908MM?psc=1

http://www.amazon.com/dp/B00KO908MM?psc=1

Programming Vision Sensors Using Python and ROS

[168]

Introduction to OpenCV, OpenNI, and PCL
Let's discuss about the software frameworks and libraries that we are using in our
robots. First, we can discuss OpenCV. This is one of the libraries that we are going to
use in this robot for object detection and other image processing functionalities.

What is OpenCV?
OpenCV is an open source BSD-licensed computer vision based library that includes
hundreds of computer vision algorithms. The library, mainly aimed for real-time
computer vision, was developed by Intel Russia research, and is now actively
supported by Itseez (http://itseez.com/).

OpenCV logo

OpenCV is written mainly in C and C++ and its primary interface is in C++. It also
has good interfaces in Python, Java, Matlab/Octave and wrappers in other languages
such as C# and Ruby.

In the new version of OpenCV, there is support for CUDA and OpenCL to get GPU
acceleration (http://www.nvidia.com/object/cuda_home_new.html).

OpenCV will run on most of the OS platforms (such as Windows, Linux, Mac OS X,
Android, FreeBSD, OpenBSD, iOS, and Blackberry).

In Ubuntu, OpenCV, and Python, wrappers are already installed when we install
the ros-indigo-desktop-full package. If this package is not installed, then we can
install the OpenCV library, ROS interface, and Python interface of OpenCV using
the following command:

$ sudo apt-get install ros-indigo-vision-opencv

http://itseez.com
http://www.nvidia.com/object/cuda_home_new.html

Chapter 7

[169]

If you want to install only the OpenCV Python wrapper, then use the
following command:

$ sudo apt-get install python-opencv

If you want to try OpenCV in Windows, you can try the following link:

http://docs.opencv.org/doc/tutorials/introduction/windows_install/
windows_install.html

The following link will guide you through the installation process of OpenCV on
Mac OS X:

http://jjyap.wordpress.com/2014/05/24/installing-opencv-2-4-9-on-mac-
osx-with-python-support/

The main applications of OpenCV are in the field of:

•	 Object detection
•	 Gesture recognition
•	 Human-computer interaction
•	 Mobile robotics
•	 Motion tracking
•	 Facial recognition

Now we can see how to install OpenCV in Ubuntu 14.04.2 from source code.

Installation of OpenCV from source code in
Ubuntu 14.04.2
We can install OpenCV from source code in Linux based on the following
documentation of OpenCV:

http://docs.opencv.org/doc/tutorials/introduction/linux_install/
linux_install.html

After the installation of OpenCV, we can try some examples using the Python
wrappers of OpenCV.

http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html
http://jjyap.wordpress.com/2014/05/24/installing-opencv-2-4-9-on-mac-osx-with-python-support/
http://jjyap.wordpress.com/2014/05/24/installing-opencv-2-4-9-on-mac-osx-with-python-support/
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html

Programming Vision Sensors Using Python and ROS

[170]

Reading and displaying an image using the
Python-OpenCV interface
The first example will load an image in grayscale and display it on screen.

In the following section of code, we will import the numpy module for image
array manipulation and the cv2 module is the OpenCV wrapper for Python in
which we can access OpenCV Python APIs. NumPy is an extension to the Python
programming language, adding support for large multidimensional arrays and
matrices along with a large library of high-level mathematical functions to operate
on these arrays (https://pypi.python.org/pypi/numpy):

#!/usr/bin/env python
import numpy as np
import cv2

The following function will read the robot.jpg image and load this image in
grayscale. The first argument of the cv2.imread() function is the name of the
image and the next argument is a flag that specifies the color type of the loaded
image. If the flag is > 0, the image returns a three channel RGB color image, if the
flag = 0, the loaded image will be a grayscale image, and if the flag is < 0, it will
return the same image as loaded:

img = cv2.imread('robot.jpg',0)

The following section of code will show the read image using the imshow() function.
The cv2.waitKey(0) function is a keyboard binding function. Its argument is time
in milliseconds. If it's 0, it will wait indefinitely for a key stroke:

cv2.imshow('image',img)
cv2.waitKey(0)

The cv2.destroyAllWindows() function simply destroys all the windows we created:

cv2.destroyAllWindows()

Save the preceding code with a name called image_read.py and copy a JPG file with
robot.jpg as its name. Execute the code using the following command:

$python image_read.py

https://pypi.python.org/pypi/numpy

Chapter 7

[171]

The output will load an image in grayscale because we used 0 as the value in the
imread() function:

The following example will try to open webcam. The program will quit when the
user presses any button.

Capturing from web camera
The following code will capture the webcam having device name /dev/video0 or
/dev/video1.

We need to import the following modules if we are using OpenCV API's:

#!/usr/bin/env python
import numpy as np
import cv2

The following function will create a VideoCapture object. The VideoCapture class
is used to capture videos from video files or cameras. The initialization arguments
of the VideoCapture class is the index of a camera or a name of a video file. Device
index is just a number to specify the camera. The first camera index is 0 having
device name /dev/video0; that's why we use 0 here:

cap = cv2.VideoCapture(0)

Programming Vision Sensors Using Python and ROS

[172]

The following section of code is looped to read image frames from the VideoCapture
object and shows each frame. It will quit when any key is pressed:

while(True):
 # Capture frame-by-frame
 ret, frame = cap.read()
 # Display the resulting frame
 cv2.imshow('frame',frame)
 if cv2.waitKey(10):
 break

The following is a screenshot of the program output:

You can explore more OpenCV-Python tutorials from the following link:

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/
py_tutorials.html

In the next section, we will look at OpenNI library and its application.

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_tutorials.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_tutorials.html

Chapter 7

[173]

What is OpenNI
OpenNI is a Multilanguage, cross-platform framework that defines API's
to write applications using Natural interaction (NI). Natural interaction
is defined in terms of experience. It means, people naturally communicate
through gestures, expressions, movements, and discover the world by
looking around and manipulating physical stuff.

OpenNI API's are composed of a set of interfaces to write NI applications.
The following figure shows a three-layered view of the OpenNI library:

The top layer represents the application layer that implements natural
interaction-based application. The middle layer is the OpenNI layer and it will
provide communication interfaces that interact with sensors and middleware
components that analyze the data from the sensor. Middleware can be used for
full body analysis, hand point analysis, gesture detection, and so on. One of the
examples of middle layer is NITE, which can detect gesture and skeleton.

The bottom layer shows the hardware devices that capture visuals and audio elements
of the scene. It includes 3D sensors, RGB cameras, an IR camera, and a microphone.

OpenNI is cross-platform and has been successfully compiled and deployed on
Linux, Mac OS X, and Windows.

In the next section, we will see how we to install OpenNI in Ubuntu 14.04.2.

Programming Vision Sensors Using Python and ROS

[174]

Installing OpenNI in Ubuntu 14.04.2
We can install the OpenNI library along with ROS packages. ROS is already
interfaced with OpenNI, but the complete installation of ros-indigo-desktop-full
may not install OpenNI packages; we need to install it from the package manager.

The following is the installation command:

$ sudo apt-get install ros-indigo-openni-launch

The source code and latest build of OpenNI for Windows, Linux, and MacOS X is
available at the following link:

http://structure.io/openni

In the next section, we will see how to install PCL.

What is PCL?
PCL is a large scale, open project for 2D/3D image, and Point Cloud processing.
The PCL framework contains numerous algorithms included to perform filtering,
feature estimation, surface reconstruction, registration, model fitting, and
segmentation. Using these methods, we can process Point Cloud and extract key
descriptors to recognize objects in the world based on their geometric appearance
and create surfaces from the Point Clouds and visualize them.

PCL logo

PCL is released under the BSD license. It's open source, and free for commercial,
or research use. PCL is cross-platform and has been successfully compiled and
deployed on Linux, Mac OS X, Windows, and Android/iOS.

You can download PCL at the following link:

http://pointclouds.org/downloads/

http://structure.io/openni
http://pointclouds.org/downloads/

Chapter 7

[175]

PCL is already integrated into ROS. The PCL library and its ROS interface will install
along with ROS full desktop installation. In the previous chapter, we discussed how
to install ROS full desktop installation. PCL is the 3D processing backbone of ROS.
Refer to the following link for details on the ROS-PCL package:

http://wiki.ros.org/pcl.

Programming Kinect with Python using
ROS, OpenCV, and OpenNI
Let's look at how we can interface and work with the Kinect sensor in ROS. ROS is
bundled with OpenNI driver, which can fetch RGB and the depth image of Kinect.
This package can be used for Microsoft Kinect, PrimeSense Carmine, Asus Xtion Pro,
and Pro Live.

This driver mainly publishes raw depth, RGB, and IR image streams. The openni_
launch package will install packages such as openni_camera and openni_launch.
The openni_camera package is the Kinect driver that publishes raw data and sensor
information, whereas the openni_launch package contains ROS launch files. It's
basically an XML file that launches multiple nodes at a time and publishes data such
as point clouds.

How to launch OpenNI driver
The following command will open the OpenNI device and load all nodelets to
convert raw depth/RGB/IR streams to depth images, disparity images, and point
clouds. The ROS nodelet package is designed to provide a way to run multiple
algorithms in the same process with zero copy transport between algorithms.

$ roslaunch openni_launch openni.launch

You can view the RGB image using a ROS tool called image_view

$ rosrun image_view image_view image:=/camera/rgb/image_color

In the next section, we will see how to interface these images to OpenCV for
image processing.

http://wiki.ros.org/pcl

Programming Vision Sensors Using Python and ROS

[176]

The ROS interface of OpenCV
ROS is integrated into many libraries. OpenCV is also integrated into ROS mainly
for image processing. The vision_opencv ROS stack includes the complete OpenCV
library and interface to ROS.

The vision_opencv provides several packages:

•	 cv_bridge: This contains the CvBridge class; this class converts from ROS
image messages to OpenCV image data type and vice versa

•	 image_geometry: This contains a collection of methods to handle image
and pixel geometry

The following diagram shows how OpenCV is interfaced to ROS:

OpenCV-ROS interfacing

The image data type of OpenCV are IplImage and Mat. If we want to work with
OpenCV in ROS, we have to convert IplImage or Mat to ROS Image messages.
The ROS package vision_opencv has the CvBridge class; this class can convert
IplImage to ROS image and vice versa.

The following section shows how to create a ROS package; this package contains
node to subscribe RGB, depth image, process the RGB image to detect edges, and
display all images after converting to an image type equivalent to OpenCV.

Creating ROS package with OpenCV support
We can create a package called sample_opencv_pkg with the following dependencies,
that is, sensor_msgs, cv_bridge, rospy, and std_msgs. The sensor_msgs dependency
defines messages for commonly used sensors, including cameras and scanning laser
rangefinders; cv_bridge is the OpenCV interface of ROS.

Chapter 7

[177]

The following command will create the ROS package with the preceding dependencies:

$ catkin-create-pkg sample_opencv_pkg sensor_msgs cv_bridge
rospy std_msgs

After creating the package, create a scripts folder inside the package and save the
code in the mentioned in the next section.

Displaying Kinect images using Python, ROS,
and cv_bridge
The first section of the Python code is given below. It mainly includes importing
of rospy, sys, cv2, sensor_msgs, cv_bridge, and the numpy module. The sensor_
msgs dependency imports the ROS data type of Image and CameraInfo. The cv_
bridge module imports the CvBridge class for converting ROS image data type to
the OpenCV data type and vice versa:

import rospy
import sys
import cv2
import cv2.cv as cv
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge, CvBridgeError
import numpy as np

The following section of code is a class definition in Python to demonstrate CvBridge
functions. The class is named as cvBridgeDemo:

class cvBridgeDemo():
 def __init__(self):
 self.node_name = "cv_bridge_demo"
 #Initialize the ros node
 rospy.init_node(self.node_name)

 # What we do during shutdown
 rospy.on_shutdown(self.cleanup)

 # Create the OpenCV display window for the RGB image

 self.cv_window_name = self.node_name
 cv.NamedWindow(self.cv_window_name, cv.CV_WINDOW_NORMAL)
 cv.MoveWindow(self.cv_window_name, 25, 75)

 # And one for the depth image

Programming Vision Sensors Using Python and ROS

[178]

 cv.NamedWindow("Depth Image", cv.CV_WINDOW_NORMAL)
 cv.MoveWindow("Depth Image", 25, 350)

 # Create the cv_bridge object
 self.bridge = CvBridge()

 # Subscribe to the camera image and depth topics and set
 # the appropriate callbacks
 self.image_sub =
rospy.Subscriber("/camera/rgb/image_color", Image,
self.image_callback)
 self.depth_sub =
rospy.Subscriber("/camera/depth/image_raw", Image,
self.depth_callback)

 rospy.loginfo("Waiting for image topics...")

The following code gives a callback function of the color image from Kinect. When a
color image comes on the /camera/rgb/image_color topic, it will call this function.
This function will process the color frame for edge detection and show the edge
detected and raw color image:

 def image_callback(self, ros_image):
 # Use cv_bridge() to convert the ROS image to OpenCV format
 try:
 frame = self.bridge.imgmsg_to_cv(ros_image, "bgr8")
 except CvBridgeError, e:
 print e

 # Convert the image to a Numpy array since most cv2
functions

 # require Numpy arrays.
 frame = np.array(frame, dtype=np.uint8)

 # Process the frame using the process_image() function
 display_image = self.process_image(frame)

 # Display the image.
 cv2.imshow(self.node_name, display_image)

 # Process any keyboard commands
 self.keystroke = cv.WaitKey(5)
 if 32 <= self.keystroke and self.keystroke < 128:
 cc = chr(self.keystroke).lower()

Chapter 7

[179]

 if cc == 'q':
 # The user has press the q key, so exit
 rospy.signal_shutdown("User hit q key to quit.")

The following code gives a callback function of the depth image from Kinect.
When a depth image comes on the /camera/depth/raw_image topic, it will
call this function. This function will show the raw depth image:

 def depth_callback(self, ros_image):
 # Use cv_bridge() to convert the ROS image to OpenCV
format
 try:
 # The depth image is a single-channel float32 image
 depth_image = self.bridge.imgmsg_to_cv(ros_image,
"32FC1")
 except CvBridgeError, e:
 print e

 # Convert the depth image to a Numpy array since most cv2
functions
 # require Numpy arrays.
 depth_array = np.array(depth_image, dtype=np.float32)

 # Normalize the depth image to fall between 0 (black) and
1 (white)
 cv2.normalize(depth_array,
depth_array, 0, 1, cv2.NORM_MINMAX)

 # Process the depth image
 depth_display_image =
self.process_depth_image(depth_array)

 # Display the result
 cv2.imshow("Depth Image", depth_display_image)

The following function is called process_image(), which will convert the color image
to grayscale, then blur the image, and find the edges using the canny edge filter:

 def process_image(self, frame):
 # Convert to grayscale
 grey = cv2.cvtColor(frame, cv.CV_BGR2GRAY)

 # Blur the image
 grey = cv2.blur(grey, (7, 7))

Programming Vision Sensors Using Python and ROS

[180]

 # Compute edges using the Canny edge filter
 edges = cv2.Canny(grey, 15.0, 30.0)

 return edges

The following function is called process_depth_image(). It simply returns the
depth frame:

 def process_depth_image(self, frame):
 # Just return the raw image for this demo
 return frame

This function will close the image window when the node shuts down:

 def cleanup(self):
 print "Shutting down vision node."
 cv2.destroyAllWindows()

The following code is the main() function. It will initialize the cvBridgeDemo()
class and call the ros spin() function:

def main(args):
 try:
 cvBridgeDemo()
 rospy.spin()
 except KeyboardInterrupt:
 print "Shutting down vision node."
 cv.DestroyAllWindows()

if __name__ == '__main__':
 main(sys.argv)

Save the preceding code to cv_bridge_demo.py and change the permission of the
node using the following command. The node is only visible to the rosrun command
if we give it executable permission.

$ chmod +X cv_bridge_demo.py

The following are the commands to start the driver and node. Start the Kinect driver
using the following command:

$ roslaunch openni_launch openni.launch

Run the node using the following command:

$ rosrun sample_opencv_pkg cv_bridge_demo.py

Chapter 7

[181]

The following is the screenshot of the output:

RGB, depth, and edge images

Working with Point Clouds using Kinect,
ROS, OpenNI, and PCL
A Point Cloud is a data structure used to represent a collection of multidimensional
points and is commonly used to represent 3D data. In a 3D Point Cloud, the points
usually represent the x, y, and z geometric coordinates of an underlying sampled
surface. When the color information is present, the Point Cloud becomes 4D.

Point Clouds can be acquired from hardware sensors (such as stereo cameras, 3D
scanners, or time-of-flight cameras). It can be generated from a computer program
synthetically. PCL supports the OpenNI 3D interfaces natively; thus it can acquire
and process data from devices (such as Prime Sensor's 3D cameras, Microsoft Kinect,
or Asus XTion PRO).

PCL will be installed along with the ROS indigo full desktop installation. Let's see
how we can generate and visualize Point Cloud in RViz, a data visualization tool
in ROS.

Opening device and Point Cloud generation
Open a new terminal and launch the ROS OpenNI driver along with the Point Cloud
generator nodes using the following command:

roslaunch openni_launch openni.launch

This command will activate the Kinect driver and process the raw data into
convenient outputs like Point Cloud.

We will use RViz 3D visualization tool to view Point Clouds.

Programming Vision Sensors Using Python and ROS

[182]

The following command will start the RViz tool:

$ rosrun rviz rviz

Set the RViz options for Fixed Frame (at the top of the Displays panel under
Global Options) to camera_link.

On the left-hand side of the RViz panel, click on the Add button and choose the
PointCloud2 display option. Set its topic to /camera/depth/points.

Change Color Transformer of PointCloud2 to AxisColor.

The following figure shows a screenshot of RViz Point Cloud data. In this screenshot,
the near object is marked in red and the far object is marked in violet and blue.
The object in front of Kinect is represented as cylinder and cube:

Point Cloud of a robot

Chapter 7

[183]

Conversion of Point Cloud to laser
scan data
We are using Kinect in this robot for replicating the function of expensive laser range
scanner. Kinect can deliver Point Cloud data which contains the depth of each point
of surrounding. The Point Cloud data is processed and converted to data equivalent
to a laser scanner using the ROS depthimage_to_laserscan package. The main
function of this package is to slice a section of the Point Cloud data and convert it
to a laser scan equivalent data type. The Pointcloud2 data type is sensor_msgs/
PointCloud2 and for the laser scanner, the data type is sensor_msgs/LaserScan.
This package will perform this processing and fake the laser scanner. The laser
scanner output can be viewed using RViz. In order to run the conversion, we have
to start the convertor nodelets that will perform this operation. We have to specify
this in our launch file to start the conversion. The following is the required code in
the launch file to start the depthimage_to_laserscan conversion:

 <!-- Fake laser -->
 <node pkg="nodelet" type="nodelet"
name="laserscan_nodelet_manager" args="manager"/>
 <node pkg="nodelet" type="nodelet"
name="depthimage_to_laserscan"
 args="load depthimage_to_laserscan/
DepthImageToLaserScanNodelet
laserscan_nodelet_manager">
 <param name="scan_height" value="10"/>
 <param name="output_frame_id" value="/camera_depth_frame"/>
 <param name="range_min" value="0.45"/>
 <remap from="image" to="/camera/depth/image_raw"/>
 <remap from="scan" to="/scan"/>
 </node>

Along with starting the nodelet, we need to set certain parameters of the nodelet for
better conversion. Refer to http://wiki.ros.org/depthimage_to_laserscan for a
detailed explanation of each parameter.

http://wiki.ros.org/depthimage_to_laserscan

Programming Vision Sensors Using Python and ROS

[184]

The laser scan of the preceding view is shown in the following screenshot. To
view the laser scan, add the LaserScan option. This is similar to how we add the
PointCloud2 option and change the Topic value of LaserScan to /scan:

Working with SLAM using ROS and Kinect
The main aim of deploying vision sensors in our robot is to detect objects and
perform robot navigation in an environment. SLAM is a technique used in mobile
robots and vehicles to build up a map of an unknown environment or update a map
within a known environment by tracking the current location of a robot.

Maps are used to plan the robot trajectory and to navigate through this path. Using
maps, the robot will get an idea about the environment. The main two challenges in
mobile robot navigation are mapping and localization.

Mapping involves generating a profile of obstacles around the robot. Through
mapping, the robot will understand how the world looks. Localization is the process
of estimating a pose of the robot relative to the map we build.

SLAM fetches data from different sensors and uses it to build maps. The 2D/3D
vision sensor can be used as an input to SLAM. The 2D vision sensors such as
laser range finders and 3D sensors such as Kinect are mainly used as an input for a
SLAM algorithm.

Chapter 7

[185]

ROS is integrated into a SLAM library using OpenSlam (http://openslam.org/
gmapping.html). The gmapping package provides laser-based SLAM as a node
called slam_gmapping. This can create a 2D map from the laser and pose data
collected by a mobile robot.

The gmapping package is available at http://wiki.ros.org/gmapping.

To use slam_gmapping, you will need a mobile robot that provides odometry
data and is equipped with a horizontally mounted, fixed, laser range finder.
The slam_gmapping node will attempt to transform each incoming scan into
the odom (odometry) tf frame.

The slam_gmapping node takes in sensor_msgs/LaserScan messages and
builds a map (nav_msgs/OccupancyGrid). The map can be retrieved via a
ROS topic or service.

The following code can be used to make a map from a robot with a laser publishing
scans on the base_scan topic:

$ rosrun gmapping slam_gmapping scan:=base_scan

Questions
1.	 What are 3D sensors and how are they different from ordinary cams?
2.	 What are the main features of a robotic operating system?
3.	 What are the applications of OpenCV, OpenNI, and PCL?
4.	 What is SLAM?
5.	 What is RGB-D SLAM and how does it work?

Summary
In this chapter, we saw vision sensors to be used in our robot. We used Kinect in our
robot and discussed OpenCV, OpenNI, PCL and their application. We also discussed
the role of vision sensors in robot navigation and a popular SLAM technique and its
application using ROS. In the next chapter, we will discuss speech processing and
synthesis to be used in this robot.

http://openslam.org/gmapping.html
http://openslam.org/gmapping.html
http://wiki.ros.org/gmapping

[187]

Working with Speech
Recognition and Synthesis

Using Python and ROS
In this chapter, we will mainly discuss the following topics:

•	 Introducing speech recognition, synthesis, and various speech
processing frameworks

•	 Working with speech recognition and synthesis using Python in
Ubuntu/Linux, Windows and Mac OS X

•	 Working with speech recognition and synthesis packages in ROS
using Python

If the robots are able to recognize and respond the way human beings communicate,
then the robot-human interaction will be much more easier and effective than any
other method. However, extracting speech parameters such as meaning, pitch,
duration, and intensity from human speech is a very tough task. Researchers found
numerous ways to solve this problem. Now, there are some algorithms that are
doing a good job in speech processing.

In this chapter, we will discuss the applications of speech recognition and
synthesis in our robot and also look at some of the libraries to perform speech
recognition and synthesis.

The main objective of speech synthesis and recognition system in this robot is to make
the robot-human interaction easier. If a robot has these abilities, it can communicate
with the surrounding people and they can ask various questions about the food
and the cost of each item. The speech recognition and synthesis functionality
can be added using the framework that we will discuss in this chapter.

Working with Speech Recognition and Synthesis Using Python and ROS

[188]

In the first section of this chapter, you will learn about the steps involved in speech
recognition and synthesis.

Understanding speech recognition
Speech recognition basically means talking to a computer and making it recognize
what we are saying in real time. It converts natural spoken language to digital format
that can be understood by a computer. We are mainly discussing the conversion of
speech-to-text process here. Using the speech recognition system, the robot will record
the sentence or word commanded by the user. The text will be passed to another
program and the program will decide which action it has to execute. We can take a
look at the block diagram of the speech recognition system that explains how it works.

Block diagram of a speech recognition system
The following is a block diagram of a typical speech recognition system. We can see
each block and understand how a speech signal is converted to text:

Speech recognition system block diagram

The speech signal is received through a microphone and will be converted to a
digital format such as PCM (Pulse Code Modulation) by the sound card inside the
PC. This digital format can be processed by the software inside the PC. In a speech
recognition process, the first phase is to extract the speech features from the digital
sound format.

Chapter 8

[189]

In the speech recognition system, the following are the common components:

•	 Feature extraction: In this process, the raw digital sound is converted
to sound feature vectors, which carry information of sounds and
suppress the irrelevant sources of sound. The sound feature vectors can
be mathematically represented as a vector with respect to time. After getting
the sound feature vectors, they will be decoded to text from a list of possible
strings and selected according to its probability.

•	 Acoustic model: The first stage of decoding is acoustic models. Acoustic
models are trained statistical models and are capable of predicting the
elementary units of speech called phonemes after getting the sound feature
vectors. Popular acoustic modeling in speech recognition is HMM (Hidden
Markov Models) and another hybrid approach is to use artificial neural
networks.

•	 Lexicon: A lexicon (also known as dictionary) contains the phonetic script
of words that we use in training the acoustic model.

•	 Language model: This provides a structure to the stream of words that is
detected according to the individual word probability. The language model
is trained using large amounts of training text (which includes the text used
to train the acoustic model). It helps to estimate the probabilities and find the
appropriate word detected.

•	 Search algorithm: This is used to find the most probable sequence of words
in the sound vectors with the help of the language model and lexicon.

•	 Recognized words: The output of the search algorithm is a list of words that
has the highest probability for given sound vectors.

Speech recognition libraries
The following are some good and popular implementations of speech recognition
algorithms in the form of libraries.

CMU Sphinx/Pocket Sphinx
Sphinx is a group of speech recognition tools developed by Carnegie Mellon
University. The entire library is open source and it comes with acoustic models and
sample applications. The acoustic model trainer improves the accuracy of detection.
It allows you to compile its language model and provides a lexicon called cmudict.
The current Sphinx version is 4. The Sphinx version customized for an embedded
system is called Pocket Sphinx. It's a lightweight speech recognition engine that
will work on desktop as well as on mobile devices. Sphinx libraries are available for
Windows, Linux, and Mac OS X.

Working with Speech Recognition and Synthesis Using Python and ROS

[190]

There are Python modules available to handle Pocket Sphinx APIs from Python.
The following is the official website of CMU Sphinx:

http://cmusphinx.sourceforge.net/

Julius
This is a high performance and continuous speech recognition library based on
HMM and can detect continuous stream of words or N-grams. It's an open source
library that is able to work in real time. There are Python modules to handle Julius
functions from Python. Julius is available in Windows, Linux, and Mac OS X. The
official website of Julius is:

http://julius.sourceforge.jp/en_index.php

Windows Speech SDK
Microsoft provides a SDK to handle speech recognition and synthesis operation.
SDK contains APIs to handle speech-related processing that can be embedded inside
the Microsoft application. The SDK only works on Windows and it has some ports
for Python like the PySpeech module. These speech APIs are comparatively accurate
than other open source tools.

Speech synthesis
Speech synthesis is the process of converting text data to speech. The following block
diagram shows the process involved in converting text to speech:

Block diagram of speech synthesis process

http://cmusphinx.sourceforge.net/
http://julius.sourceforge.jp/en_index.php

Chapter 8

[191]

For more details, refer to page 6 of Spoken Language Processing, X. Huang, A. Acero, H.-W.
Hon, Prentice Hall PTR, published in 2001.

Let us take a look at the speech synthesis stages:

•	 Text analysis: In text analysis, the text to be converted to speech will
check for the structure of text, linguistic analysis, and text normalization
to convert numbers and abbreviations to words

•	 Phonetic analysis: In phonetic analysis, each individual text data called
grapheme is converted to an individual indivisible sequence of sound
called phoneme

•	 Prosodic analysis: In prosodic analysis, the prosody of speech (such as
rhythm, stress, and intonations of speech) added to the basic sound makes
it more realistic

•	 Speech synthesis: This unit finally binds the short units of speech and
produces the final speech signal

Speech synthesis libraries
Let's now discuss a bit about the various speech synthesis libraries.

eSpeak
eSpeak is an open source lightweight speech synthesizer mainly for English language
and it will also support several other languages. Using eSpeak, we can change the
voices and its characteristics. eSpeak has the module to access its APIs from Python.
eSpeak works mainly in Windows and Linux and it's also compatible with Mac OS X.
The official website of eSpeak is as follows:

http://espeak.sourceforge.net/

Festival
Festival is an open source and free speech synthesizer developed by Centre of
Speech Technology Research (CSTR) and is written completely in C++. It provide
access to the APIs from Shell in the form of commands and also in C++, Java, and
Python. It has multi language support (such as English and Spanish). Festival mainly
supports Linux-based platform. The code can also be built in Windows and Mac OS
X. The following is the official website of the Festival speech synthesis system:

http://www.cstr.ed.ac.uk/projects/festival/

http://espeak.sourceforge.net/
http://www.cstr.ed.ac.uk/projects/festival/

Working with Speech Recognition and Synthesis Using Python and ROS

[192]

Working with speech recognition and
synthesis in Ubuntu 14.04.2 using Python
In this section, we will discuss Python interfacing with Pocket Sphinx, Julius, and
Microsoft Speech SDK and speech synthesis frameworks such as eSpeak and Festival.
Let's start with speech recognition libraries and their installation procedures.

Setting up Pocket Sphinx and its Python
binding in Ubuntu 14.04.2
The following packages are required to install Pocket Sphinx and its Python bindings:

•	 python-pocketsphinx

•	 pocketsphinx-hmm-wsj1

•	 pocketsphinx-lm-wsj

The packages can be installed using the apt-get command. The following
commands are used to install Pocket Sphinx and its Python interface.

Installing Pocket Sphinx in Ubuntu can be done either through source code or by
package managers. Here, we will install Pocket Sphinx using the package manager:

•	 The following command will install HMM of Pocket Sphinx:
$ sudo apt-get install pocketsphinx-hmm-wsj1

•	 The following command will install LM of Pocket Sphinx:
$ sudo apt-get install pocketsphinx-lm-wsj

•	 The following command will install the Python extension of Pocket Sphinx:
$ sudo apt-get install python-pocketsphinx

Once we are done with the installation, we can work with Python scripting for
speech recognition.

Chapter 8

[193]

Working with Pocket Sphinx Python binding
in Ubuntu 14.04.2
The following is the code to perform speech recognition using Pocket Sphinx and
Python. The following code demonstrates how we can decode the speech recognition
from a wave file:

#!/usr/bin/env python
import sys

#In Ubuntu 14.04.2, the pocketsphinx module shows error in first
import and will work for the second import. The following code is
a temporary fix to handle that issue
try:
 import pocketsphinx

except:
 import pocketsphinx

The preceding code will import the pocketsphinx Python module and Python
sys module. The sys module contain functions that can be called during program
runtime. In this code, we will use the sys module to get the wave filename from the
command-line argument:

if __name__ == "__main__":
 hmdir = "/usr/share/pocketsphinx/model/hmm/en_US/hub4wsj_sc_8k"
 lmdir = "/usr/share/pocketsphinx/model/lm/en_US/hub4.5000.DMP"
 dictd = "/usr/share/pocketsphinx/model/lm/en_US/cmu07a.dic"

The hmdir, lmdirn, and dictd variables hold the path of HMM, LM (Language
Model), and dictionary of Pocket Sphinx:

 #Receiving wave file name from command line argument
 wavfile = sys.argv[1]

The following code will pass HMM, LM, and the dictionary path of Pocket Sphinx
to Pocket Sphinx's Decoder class. Read and decode the wave file. In the end, it will
print the detected text:

 speechRec = pocketsphinx.Decoder(hmm = hmdir, lm = lmdir,
dict = dictd)
 wavFile = file(wavfile,'rb')
 speechRec.decode_raw(wavFile)
 result = speechRec.get_hyp()

 print "\n\n\nDetected text:>",result
 print "\n\n\n"

Working with Speech Recognition and Synthesis Using Python and ROS

[194]

Output
The preceding code can be run using the following command:

$ python <code_name.py> <wave_file_name.wav>

The following is a screenshot of the output. The detected text was not the content on
the wave file. The detection accuracy with the default acoustic model and LM is low;
we have to train a new model or adapt an existing model to improve accuracy:

The previous method we discussed was an offline recognition; in the next section,
we will see how to perform real-time speech recognition using Pocket Sphinx,
GStreamer, and Python. In this approach, real-time speech data comes through
the GStreamer framework and is decoded using Pocket Sphinx. To work with the
GStreamer Pocket Sphinx interface, install the following packages:

The following command will install the GStreamer plugin for Pocket Sphinx:

$ sudo apt-get install gstreamer0.10-pocketsphinx

The following package will install the GStreamer Python binding. It will enable
you to use GStreamer APIs from Python:

$ sudo apt-get install python-gst0.10

The following package will install the GStreamer plugin to get information
from GConf:

$ sudo apt-get install gstreamer0.10-gconf

Chapter 8

[195]

Real-time speech recognition using
Pocket Sphinx, GStreamer, and Python
in Ubuntu 14.04.2
The following is the code for real-time speech recognition using GStreamer:

#!/usr/bin/env python

#The following modules need to import before handling
gstreamer API's

import gobject
import sys
import pygst
pygst.require('0.10')
gobject.threads_init()
import gst

#Module to handle keyboard interrupt signal
import signal

#Keyboard signal handling routine
def signal_handle(signal, frame):
 print "You pressed Ctrl+C"
 sys.exit(0)

#Implementation of Speech recognition class
class Speech_Recog(object):

 #Initializing gstreamer pipeline and pocket sphinx element
 def __init__(self):
 self.init_gst()

 #This function will initialize gstreamer pipeline
 def init_gst(self):
 #The following code create a gstreamer pipeline with
pipeline description. The required descriptors needed
for the code is given as parameters.
 self.pipeline =
gst.parse_launch('gconfaudiosrc !audioconvert ! audioresample '
 + '! vader name=vad auto-threshold=true '
 + '! pocketsphinx name=asr ! fakesink')

Working with Speech Recognition and Synthesis Using Python and ROS

[196]

 #Accessing pocket sphinx element from gstreamer pipeline
 asr = self.pipeline.get_by_name('asr')
 #Connecting to asr_result function when a speech to
text conversion is completed
 asr.connect('result', self.asr_result)

 #User can mention lm and dict for accurate detection
 #asr.set_property('lm', '/home/user/mylanguagemodel.lm')
 #asr.set_property('dict','/home/user/mylanguagemodel.dic')

 #This option will set all options are configured well
and can start recognition
 asr.set_property('configured', True)

 #Pausing the GStreamer pipeline at first.
 self.pipeline.set_state(gst.STATE_PAUSED)

 #Definition of asr_result
 def asr_result(self, asr, text, uttid):
 #Printing the detected text
 print "Detected Text=> ",text

 #This function will start/stop Speech recognition operation
 def start_recognition(self):
 #VADER - Voice Activity DEtectoR, which helps when the
speech start and when its ends. Creating VADER object and set the
property silent to False, so no speech will detected until key
press
 vader = self.pipeline.get_by_name('vad')
 vader.set_property('silent', False)

 #Waiting for a key press to start recognition
 raw_input("Press any key to start recognition:>")
 #Start playing the pipeline
 self.pipeline.set_state(gst.STATE_PLAYING)

 #Waiting for stopping the recognition
 raw_input("Press any key to stop recognition:>")
 vader = self.pipeline.get_by_name('vad')
 #Setting silent property of VADER to True
 vader.set_property('silent', True)
 #Pausing GStreamer pipeline
 self.pipeline.set_state(gst.STATE_PAUSED)

Chapter 8

[197]

if __name__ == "__main__":

 #Creating an object of Speech_Recog() class
 app_object = Speech_Recog()

 #Assign keyboard interrupt handler
 signal.signal(signal.SIGINT, signal_handle)

 while True:

 #Calling Speech recognition routine
 app_object.start_recognition()

The code can be simply executed using the following command:

$ python <code_name.py>

The following is the screenshot of the output window:

Press any key to start recognition; after this, we can talk and it will be converted and
printed on the terminal window. To stop detection, press any key and it will pause
the GStreamer pipeline.

One of the other speech recognition tool is Julius. We will see how to install it and
work with it using Python.

Working with Speech Recognition and Synthesis Using Python and ROS

[198]

Speech recognition using Julius and
Python in Ubuntu 14.04.2
In this section, we will see how to install the speech recognition system of Julius
and how to connect it to Python. The required packages (such as Julius and audio
tools) are available in Ubuntu's package manager, but we also need to download
and install the Python wrapper separately. Let's start with the required components
for the installation.

Installation of Julius speech recognizer and
Python module
The following are the instructions to install Julius and Python binding in Ubuntu
14.04.2:

•	 The following command will install the speech recognition system of Julius:
$ sudo apt-get install julius

•	 The following command will install padsp (the pulse audio tool). It may be
necessary to run the Julius speech recognizer in Ubuntu 14.04.2:
$ sudo apt-get install pulseaudio-utils

•	 The following command will install the OSS proxy daemon to emulate the
OSS sound device and stream through the ALSA device. It will emulate
the /dev/dsp device in Ubuntu and stream through ALSA. Julius needs
the /dev/dsp device for its functioning:
$ sudo apt-get install osspd-alsa

•	 Reload the ALSA process to bind osspd to alsa:
$ sudo alsa force-reload

To install pyjulius, the Python extension for Julius, you need to install the setup tools
in Python.

1.	 To install the setup tools, the best option is to download a script from the
setup tools website; it's a global script that can be used in any OS. The script
can be downloaded from the following link using the wget tool:
$ wget https://bootstrap.pypa.io/ez_setup.py
$ sudo python ez_setup.py

2.	 The installation details of setup tools is mentioned at https://pypi.
python.org/pypi/setuptools

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/setuptools

Chapter 8

[199]

3.	 After the installation of setup tools, download pyjulius from
https://pypi.python.org/pypi/pyjulius/0.3

4.	 Extract the achieve and installation package using the following command:
$ sudo python setup.py install

5.	 After the installation of pyjulius, install a demo of the Julius tool, which
contains HMM, LM, and dictionary of a few words. Download the Julius
quick-start files using the following command:
$ wget
http://www.repository.voxforge1.org/downloads/software/julius-
3.5.2-quickstart-linux.tgz

6.	 Extract the files and run the command from the folder.
7.	 Execute the following command in the extracted folder. It will start the

speech recognition in the command line:
$ padsp julius -input mic -C julian.jconf

8.	 To exit speech recognition, click on CTRL + C.
9.	 To connect to Python, enter the following command:

$ padsp julius -module -input mic -C julian.jconf

This command will start a Julius server. This server listens to clients. If we want
to use Julius APIs from Python, we need to connect to a server using a client code
as given in the following sections. The Python code is a client that connects to the
Julius server and prints the recognized text.

Python-Julius client code
The following code is a Python client of the Julius speech recognition server that we
started using the previous command. After connecting to this server, it will trigger
speech-to-text conversion and fetch the converted text and print on terminal:

#!/usr/bin/env python
import sys

#Importing pujulius module
import pyjulius

#It an implementation of FIFO(First In First Out) queue suitable for
multi threaded programming.
import Queue

https://pypi.python.org/pypi/pyjulius/0.3

Working with Speech Recognition and Synthesis Using Python and ROS

[200]

Initialize Julius Client object with localhost ip and default port
of 10500 and trying to connect server.
client = pyjulius.Client('localhost', 10500)
try:
 client.connect()
#When the client runs before executing the server it will cause a
connection error.
except pyjulius.ConnectionError:
 print 'Start julius as module first!'
 sys.exit(1)

Start listening to the server
client.start()
try:
 while 1:
 try:
 #Fetching recognition result from server
 	 result = client.results.get(False)
 except Queue.Empty:
 continue
 print result
except KeyboardInterrupt:
 print 'Exiting...'
 client.stop() # send the stop signal
 client.join() # wait for the thread to die
 client.disconnect() # disconnect from julius

After connecting to Julius server, the Python client will listen to server and print
the output from the server.

The acoustic models we used in the preceding programs are already trained, but
they may not give accurate results for our speech. To improve the accuracy in the
previous speech recognition engines, we need to train new language and acoustic
models and create a dictionary or we can adapt the existing language model using
our voice. The method to improve accuracy is beyond the scope of this chapter, so
some links to train or adapt both Pocket Sphinx and Julius are given.

Chapter 8

[201]

Improving speech recognition accuracy in
Pocket Sphinx and Julius
The following link is used to adapt the existing acoustic model to our voice for
Pocket Sphinx:

http://cmusphinx.sourceforge.net/wiki/tutorialadapt

Julius accuracy can be improved by writing recognition grammar. The following
link gives an idea about how to write recognition grammar in Julius:

http://julius.sourceforge.jp/en_index.php?q=en_grammar.html

In the next section, we will see how to connect Python and speech synthesis libraries.
We will work with the eSpeak and Festival libraries here. These are two popular,
free, and effective speech synthesizers available in all the OS platforms. There are
precompiled binaries available in Ubuntu in the form of packages.

Setting up eSpeak and Festival in Ubuntu 14.04.2
eSpeak and Festival are speech synthesizers available in the Ubuntu/Linux
platform. These applications can be installed from the software package repository
of Ubuntu. The following are the instructions and commands to install these
packages in Ubuntu.

1.	 The following commands will install the eSpeak application and its wrapper
for Python. We can use this wrapper in our program and access eSpeak APIs:
$ sudo apt-get install espeak
$ sudo apt-get install python-espeak

2.	 The following command will install the Festival text-to-speech engine.
Festival has some package dependencies; all dependencies will be
automatically installed using this command:
$ sudo apt-get install festival

3.	 After the installation of the Festival application, we can download and install
Python bindings for Festival.

4.	 Download Python bindings using the following command. We need the svn
tool (Apache Subversion) to download this package. Subversion is a free
software versioning and revision control system:
$ svn checkout http://pyfestival.googlecode.com/svn/trunk/
pyfestival-read-only

http://cmusphinx.sourceforge.net/wiki/tutorialadapt
http://julius.sourceforge.jp/en_index.php?q=en_grammar.html

Working with Speech Recognition and Synthesis Using Python and ROS

[202]

5.	 After the downloading process is complete, switch to the pyfestival-read-
only folder and you can install this package using the following command:
$ sudo python setup.py install

Here is the code to work with Python and eSpeak. As you will see, it's very easy to
work with Python binding for eSpeak. We need to write only two lines of code to
synthesize speech using Python:

from espeak import espeak
espeak.synth("Hello World")

This code will import the eSpeak-Python wrapper module and call the synth
function in the wrapper module. The synth function will synthesize the text
given as argument.

The following code shows how to synthesize speech using Python and Festival:

import festival
festival.say("Hello World")

The preceding code will import the Festival-Python wrapper module and call the
say function in the Festival module. It will synthesize the text as speech.

Working with speech recognition and
synthesis in Windows using Python
In Windows, there are many tools and frameworks to perform speech recognition
and synthesis. The speech recognition libraries, namely, Pocket Sphinx and Julius
that we discussed will also be supported in Windows. Microsoft also provides SAPI
(Speech Application Programming Interface), a set of APIs that allows you to use
speech recognition and synthesis from code. These APIs are either shipped with an
operating system or with Microsoft Speech SDK.

In this section, we will demonstrate how to connect Python and Microsoft Speech
SDK to perform speech recognition and synthesis. This procedure will work in
Windows 8, Windows 7, 32, and 64 bit.

Chapter 8

[203]

Installation of the Speech SDK
The following is the step-by-step procedure to install Speech SDK and the Python
wrapper of Speech SDK:

1.	 Download Speech SDK from http://www.microsoft.com/en-in/
download/details.aspx?id=27226

2.	 Download and install Active State Python 2.7 bit from
http://www.activestate.com/activepython/downloads

3.	 Download and install Python wrapper for the Windows Speech SDK from
https://pypi.python.org/pypi/speech/. Currently, this project is not
active, but it will work fine in Windows 7 and 8

4.	 Install the package using the following command:
python setup.py install

5.	 The code to do speech recognition using Python is very simple and it's given
in the following code:
import speech
result = speech.input("Speak")
print result

In this code, we import the speech module. When we import the speech module,
the speech recognition panel of Windows will pop up. It will be in off state first
and we need to turn it on to perform the recognition. The recognized text will be
printed on the Python command line.

Next, we can look at the speech synthesis using Python. Similar to the speech
recognition process, it's very easy to perform the speech module. This can be
used to perform speech synthesis. Here is the code:

import speech
speech.say("Hello World")

In this code, speech.say() is the method to convert text to speech.

We have seen some of the speech recognition and synthesis platforms. Now, we
can take a look at how we can integrate speech recognition and synthesis in ROS.
The following section discusses the integration of speech recognition and synthesis
on ROS.

http://www.microsoft.com/en-in/download/details.aspx?id=27226
http://www.microsoft.com/en-in/download/details.aspx?id=27226
http://www.activestate.com/activepython/downloads
https://pypi.python.org/pypi/speech/

Working with Speech Recognition and Synthesis Using Python and ROS

[204]

Working with Speech recognition in ROS
Indigo and Python
Compared to other speech recognition methods, one of the easiest and effective
methods to implement real time speech recognition is Pocket Sphinx and GStreamer
pipeline. We discussed Pocket Sphinx, GStreamer and its interfacing with
Python previously. Next, we can see a ROS package called pocketsphinx that
uses the GStreamer pocketsphinx interface to perform speech recognition. The
pocketsphinx ROS package is available in the ROS repository. You will get the
package information at the following link

http://wiki.ros.org/pocketsphinx

Installation of the pocketsphinx package in
ROS Indigo
To install the pocketsphinx package, first switch to the catkin workspace source
folder.

1.	 Download the source code of the pocketsphinx package using the
following command:
$ git clone https://github.com/mikeferguson/pocketsphinx

2.	 Execute the catkin_make command from the catkin workspace folder
to build the package

3.	 Start the speech recognizer demo using the following command. The
robotcup demo has some basic commands to drive the robot. We can
change the command by adapting acoustic and language models:
$ roslaunch pocketsphinx robocup.launch

4.	 Subscribe to /recognizer/output using the following command:
$ rostopic echo /recognizer/output

http://wiki.ros.org/pocketsphinx

Chapter 8

[205]

The following is the screenshot of the output:

This Topic can be subscribed and the command can be processed in some other nodes.
In the next section, we will see how to synthesize speech using ROS and Python.

Working with speech synthesis in ROS
Indigo and Python
In ROS, there are some ROS packages that perform speech synthesis. Here, we will
discuss one ROS package. This package uses Festival as the backend. The package
name is sound_play. It has nodes and launch scripts that enable speech synthesis.
We need to perform the following steps for speech synthesis:

1.	 We can install the sound_play package using the following command:
$ sudo apt-get install ros-indigo-sound-play

2.	 After the installation of package, we have to create a sample ROS package to
interact with the sound-play node. The following is the command to create a
sample package in ROS with the sound-play package as dependency:
$ catkin_create_pkg sample_tts rospy roscpp sound_play std_msgs

3.	 We have to create a sound_play python client code for sending text to
sound play server node. This client will send the text that needs to be
converted to speech to the sound_play server node. The client will send the
text to convert to speech in a Topic called /robotsound. The sound play
node in the sound play package will subscribe to this Topic and convert the
string from Topic to speech.

Working with Speech Recognition and Synthesis Using Python and ROS

[206]

4.	 Create a folder inside this sample_tts package named scripts and create
the following code in the scripts folder and name it test.py. The code
snippets of test.py is given.

5.	 The following code will import the rospy and sound_play modules.
This script will act as a SoundClient, which will connect to the
sound_play server and synthesize the speech:
#!/usr/bin/env python
import roslib; roslib.load_manifest('sample_tts')
import rospy, os, sys
from sound_play.msg import SoundRequest
from sound_play.libsoundplay import SoundClient

6.	 This code will initialize the soundplay_test node and create an object
of SoundClient:
if __name__ == '__main__':
 rospy.init_node('soundplay_test', anonymous = True)
 soundhandle = SoundClient()
 rospy.sleep(1)

 soundhandle.stopAll()

7.	 This code will call a function to synthesize the speech. It can be used to
synthesize speech in any package that includes sound_play as dependency.
 print 'Starting TTS'
 soundhandle.say('Hello world!')
 rospy.sleep(3)

 s = soundhandle.voiceSound("Hello World")
 s.play()
 rospy.sleep(3)

8.	 The following command starts the sound play server:
$ roslaunch sound_play soundplay_node.launch

9.	 The following command will start the test script for speech synthesis:
$ rosrun sample_tts test.py

Chapter 8

[207]

Questions
1.	 What are the basic procedures involved in converting speech to text?
2.	 What is the function of the acoustic model and language model in

speech recognition?
3.	 What are the basic procedures involved in converting text to speech ?
4.	 What are the procedures involved in phonetic analysis and prosodic analysis?
5.	 How can we improve the recognition accuracy of Sphinx and Julius?

Summary
The main aim of this chapter was to discuss speech recognition and synthesis and
how we can implement it on our robot. By adding speech functionalities in our
robot, we can make the robot more interactive than before. We saw what are the
processes involved in the speech recognition and synthesis process. We also saw the
block diagram of these processes and the functions of each block. After discussing
the blocks, we saw some interesting speech recognition frameworks (such as
Sphinx/Pocket Sphinx, Julius, and Windows Speech SDK and synthesis libraries
such as eSpeak and Festival). After discussing these libraries, we discussed and
worked with the Python interfacing of each library. Towards the end of this chapter,
we discussed and worked with the ROS packages that perform speech recognition
and synthesis functionalities.

[209]

Applying Artificial Intelligence
to ChefBot Using Python

In the previous chapter, we have discussed and implemented speech recognition
and speech synthesis using Python and ROS. In this chapter, we will discuss how
to apply AI to ChefBot to communicate with people intelligently, like a human.
Actually, these features are add-ons in ChefBot, which can increase human-robot
interaction and make the robot resemble a human food supplier. In this chapter,
we will mainly cover the following topics:

•	 Block diagram of ChefBot's communication system
•	 Introduction to AIML and PyAIML
•	 Interfacing ChefBot's AI module to ROS

AI (Artificial Intelligence) can be defined as the intelligent behavior exhibited by
computers or machines. Using AI, we can create a virtual intelligence in machines
to perform a specific task like a human. In this chapter, we will use a simple method
to apply AI to the robot. This intelligence will work using pattern matching and
searching algorithms. The input-output dialog patterns between the user and robot
are stored in files called Artificial Intelligence Markup Language (AIML) and we
will interpret these stored patterns using a Python module called PyAIML. The user
can store desired patterns in AIML files and the interpreter module will search for
appropriate response from the dataset. We can develop our own pattern dataset
for our robot simply by writing logical patterns. In one section of this chapter, we
will see how to write AIML tags and patterns in a robot. In the first section, we will
discuss where we will use AI in ChefBot.

Applying Artificial Intelligence to ChefBot Using Python

[210]

Block diagram of the communication
system in ChefBot
The following block diagram shows how ChefBot communicates and interacts with
humans using speech:

Robot communication block diagram

The robot can convert human speech to text using the speech recognition system
and can convert textual data to speech using speech synthesis. We have already
discussed these processes in the previous chapter. The AI we will discuss here is
contained in between these two blocks. After receiving the text data from a speech
to text conversion stage, it is sent to the AIML interpreter. The AIML interpreter
retrieves the most meaningful reply from the AIML dataset. The dataset of the robot
can be anything, such as food details, casual talks, and so on. The user can write any
kind of pattern in AIML files. In the case of ChefBot, the user can ask about food
details or can command the robot to do something. The robot command system
checks whether the converted text is a command to the robot. If it's a command, it is
directly sent to the hardware nodes to execute. The output text from AIML will be
converted to speech using a text-to-speech system. Also, we can put an LCD display
to show the result of speech in the form of an animated face. All these features
enhance the robot's interaction. Before we discuss the Python interpreter for AIML,
we will discuss AIML and AIML tags in detail.

Chapter 9

[211]

Introduction to AIML
AIML files are a subset of Extensible Mark-up Language (XML) that can store
different text patterns in the form of tags. AIML was developed by the Alicebot
free software community (http://www.alicebot.org/). AIML is mainly used to
implement Chatbots, a natural language software agent in which a user can ask
questions to the robot and it can give an intelligent reply. This same technique is used
in ChefBot. Using speech recognition, the robot gets input text from the user and an
AIML interpreter; a software program that can interpret AIML files and retrieve an
intelligent reply from the AIML dataset. The reply will be converted to speech. AIML
files mainly consist of various tags. Here are a set of commonly used AIML tags.

Introduction to AIML tags
AIML files consist of a set of commonly used AIML tags. Let's take a look at them.

The <aiml> tag: Each AIML code begins with this tag and is closed using the </aiml>
tag. This tag also consists of attributes such as the version and encoding scheme of the
file. The AIML file can parse even without these attributes, but this will be useful in big
projects. The version attribute corresponds to the current version of AIML that we will
use. The encoding attribute is the type of character encoding we will use in this file.
The following code snippet shows an example usage of AIML tags:

<aiml version="1.0.1" encoding="UTF-8">
...
</aiml>

The <category> tag: The basic knowledge blocks of AIML are called categories.
Each category block consists of two sections. One is the user input in the form of
a sentence and the other is a corresponding response to user input which comes
from robot. The category tag is represented using the opening <category> tag and
the closing tag is represented using the </category> tag. These categories must be
inside the <aiml> and </aiml> tags. The category tags consist of two tags, namely,
the <pattern> tag and the <template> tag. The input given by users is inside the
<pattern> tag and the answers are in the <template> tag. For example, look at
this following conversation:

User: How are you?

Robot: I am fine.

http://www.alicebot.org/

Applying Artificial Intelligence to ChefBot Using Python

[212]

In this conversation, the user dialog will be in the <pattern> tag and the robot's
response will be in the <template> tag. The following code shows the representation
of the preceding dialogs in the AIML format:

<aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> HOW ARE YOU </pattern>
 <template> I AM FINE </template>
 </category>
</aiml>

We need to save this file in the .aiml or .xml format.

The <pattern> tag: The pattern tag comprises of possible user inputs. There
will be only one <pattern> tag in a category block. The <pattern> tag will be
the first element of the <category> tag and, in the <pattern> tag, words are
separated by single spaces. The sentence in <pattern> tag may have words or
wild cards such as "*" or "_", which can replace a string in this position. In the
preceding example, the <pattern> HOW ARE YOU </pattern> code indicates
the possible user input in this category.

The <template> tag: The <template> tag comprises of possible answers for the
user input. The <template> tag will be within the <category> tag and will be
placed after the <pattern> tag. The <template> tag can save a particular answer
or it can trigger programs. Also, we can give conditional form of answers too. In the
preceding code, the <template> tag sentence: "I AM FINE" will be the answer for
the "HOW ARE YOU" pattern. We can insert additional tags in the <template> tag.
The following tags are used in the <template> tag:

The <star index = "n"/> tag: This tag is used to extract a part of the user text
input sentence. The n index indicates which fragment of text has to be extracted
and taken from the entire sentence:

•	 <star index="1"/>: This indicates the first fragment of a sentence
•	 <star index="2"/>: This indicates the second fragment of a sentence

The main application of this tag is to extract and store the text from user input.
The following is a dialog between the robot and the user. The wildcard can be
anything, such as a name or something else. Using this tag, we can extract this
wildcard portion and use it in the answering section:

User: My name is *

Robot: Nice to meet you *

Chapter 9

[213]

So, if the user says, "My name is Lentin", then the robot will reply, "Nice to meet
you Lentin". This kind of conversation is only possible using the <star> tag and
wildcards such as "*". The complete AIML example using the star tag is as follows:

<aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> MY NAME IS * </pattern>
 <template>
 NICE TO MEET YOU <star/>
 </template>
 </category>
 <category>
 <pattern> MEET OUR GUEST * AND * </pattern>
 <template>
 NICE TO MEET YOU <star index="1"/> AND <star index="2"/>.
 </template>
 </category>
</aiml>

If we load this example to the AIML interpreter, we will get the following reply
when we give the following input:

USER: MY NAME IS LENTIN

ROBOT: NICE TO MEET YOU LENTIN

The previous conversation uses one wildcard and the following conversation will
use both wildcards:

USER: MEET OUR GUEST TOM AND JOSEPH

ROBOT: NICE TO MEET YOU TOM AND JOSEPH

Here, the name is "TOM", the index number is "1", and "JOSEPH" is indexed as "2".

The <srai> tag: Using the <srai> tag, we can target multiple patterns from a single
<template> tag. Using the <srai> tag, the AIML interpreter can search recursively
for the answer that is replacing the current template text with the template text of
another pattern. The following code is an example of the usage of the <srai> tag:

<aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> WHAT IS A ROBOT? </pattern>
 <template>
 A ROBOT IS A MACHINE MAINLY DESIGNED FOR EXECUTING REPEATED
 TASK WITH SPEED AND PRECISION.

Applying Artificial Intelligence to ChefBot Using Python

[214]

 </template>
 </category>
 <category>
 <pattern> DO YOU KNOW WHAT A * IS ? </pattern>
 <template>
 <srai> WHAT IS A <star/> </srai>
 </template>
 </category>

</aiml>

When a user asks the robot, "DO YOU KNOW WHAT A ROBOT IS", it will go to the
second category template and extract the wildcard section from user input, "ROBOT"
and put the complete sentence, "WHAT IS A ROBOT", and put it in the <srai> tag.
The <srai> tag can call the pattern called "WHAT IS A ROBOT" and fill the output
of this template to the actual template text.

For more AIML tags, you can refer to http://www.alicebot.org/documentation/
aiml-reference.html.

After discussing AIML files and tags, we will discuss the Python AIML interpreter
to decode AIML files. The AIML interpreter can retrieve the template text from user
input. We will use a Python module called PyAIML to interpret AIML files. Let's
discuss more about PyAIML.

Introduction to PyAIML
PyAIML is an open source Python AIML interpreter written completely in pure
Python without using any third-party dependencies. The module will read all the
patterns of AIML from memory and build a directed pattern tree. The backtracking
depth-first search algorithm is implemented in this module for pattern matching.

Now, we can check whether we can install PyAIML on our system. The PyAIML
module can be installed on Linux, Windows, and Mac OS X. There are prebuilt
binaries of PyAIML available on Ubuntu and the source code of this module is also
available on GitHub. Currently, we are working with Python version 2.7, or anything
less than 2.8, to install PyAIML.

http://www.alicebot.org/documentation/aiml-reference.html
http://www.alicebot.org/documentation/aiml-reference.html

Chapter 9

[215]

Installing PyAIML on Ubuntu 14.04.2
PyAIML can be installed on Ubuntu using the apt-get command. The binaries are
available on the Ubuntu package repositories. The Python version we are working
with is 2.7.6 and the PyAIML version we are installing is 0.86. The following
command will install PyAIML on Ubuntu 14.04.2:

$ sudo apt-get install python-aiml

You should install Git to get the source code. Also, you should have Python version
2.7 or greater than 2.7 and less than 2.8. We require the latest version of the module
if we are performing the installation via source code.

Installing PyAIML from source code
We can retrieve the source code module using the following git command:

$ git clone git://pyaiml.git.sourceforge.net/gitroot/pyaiml/pyaiml

After cloning the code, change the directory to a cloned directory named pyaiml:

$ cd pyaiml

Install the module using the following command:

$ sudo python setup.py install

Working with AIML and Python
To check whether the module is properly installed on your machine, open a Python
IDLE and import the aiml module:

>>> import aiml

If the module is imported correctly, it will not show any error and comes to the next
line. Then, we can confirm that the installation is correct.

The most important class we are handling in the aiml module is Kernel().
We are mainly using this class to learn from AIML files and get a response from
the AIML dataset to user input. The following line will create an object of the
aiml.Kernel() class:

>>> mybot = aiml.Kernel()

Applying Artificial Intelligence to ChefBot Using Python

[216]

After creating the Kernel() object, we can assign the robot name using the following
command. We will assign Chefbot as the name for this robot:

>>> mybot.setBotPredicate("name","Chefbot")

The next step is to learn AIML files. We can load either a single AIML file or a
group of AIML files. To load a single AIML file, we can use the following command.
Note that the sample.aiml file must be in the current path:

>>> mybot.learn('sample.aiml')

The preceding command will load the sample.aiml file into memory and the output
is as follows:

Loading sample.aiml ... done (0.01 seconds)s

If you want to learn more than one AIML, it's better to use an AIML/XML
file, for example, the startup.xml file can load all other AIML files. We will see
how startup.xml works in the next section. To learn startup.xml, use the
following command:

>>> mybot.learn("startup.xml")

After you learn startup.xml, let's trigger a pattern in startup.xml called "LOAD
AIML B". When we call this pattern, it will respond by learning all AIML files and
print the response in string after learning each AIML file:

>>> mybot.respond("load aiml b")

After learning AIML files, we can start inputting text to the kernel object and retrieve
the intelligent text using the following code:

>>> while True: print k.respond(raw_input("> "))

The complete Python code to load one AIML file and get a response from the AIML
dataset is given in the code snippet in the following section. We can pass the AIML
file as a command-line argument.

Loading a single AIML file from the
command-line argument
We can load a single AIML file using the following code:

#!/usr/bin/env python
import aiml
import sys

Chapter 9

[217]

mybot = aiml.Kernel()
mybot.learn(sys.argv[1])

while True:
 print mybot.respond(raw_input("Enter input >"))

The following is the sample AIML file required to load in this code. Save the
following code with the name sample.aiml:

<aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> HOW ARE YOU </pattern>
 <template> I AM FINE </template>
 </category>
</aiml>

Save the code as chatbot.py and change the permission of the code using the
following command:

$ chmod +x chatbot.py

Execute the code using the following command:

$./chatbot sample.aiml

It will give you the following result:

Press Ctrl + C to quit the dialog. We can check whether each AIML example we
previously discussed can be tested using this example.

If there is more than one XML file, we can use the following code to load all the
AIML files into memory. Let's download some AIML dataset from the Artificial
Linguistic Internet Computer Entity (A.L.I.C.E) robot and load it using PyAIML.

Applying Artificial Intelligence to ChefBot Using Python

[218]

Working with A.L.I.C.E. AIML files
The AIML files of A.L.I.C.E. chatter are freely available at https://code.google.
com/p/aiml-en-us-foundation-alice/.

Extract the AIML files to a folder on the desktop or in the home directory and copy
startup.xml to these AIML files. This startup.xml file will load all the other AIML
files into memory. The following code is an example of a typical startup.xml file:

<aiml version="1.0">
<category>
 <pattern>LOAD AIML B</pattern>
 <template>
 <!-- Load standard AIML set -->
 <learn>*.aiml</learn>

 </template>
</category>
</aiml>

The preceding XML file will learn all the AIML files when we call the LOAD AIML B
pattern.

Loading AIML files into memory
The following code will load all the AIML files into memory:

#!/usr/bin/env python

import aiml
import sys
import os

#Change the current path to your aiml files path
os.chdir('/home/lentin/Desktop/aiml-files')
mybot = aiml.Kernel()

#Learn startup.xml
mybot.learn('startup.xml')

#Calling load aiml b for loading all AIML files
mybot.respond('load aiml b')

while True:
 print mybot.respond(raw_input("Enter input >"))

https://code.google.com/p/aiml-en-us-foundation-alice/
https://code.google.com/p/aiml-en-us-foundation-alice/

Chapter 9

[219]

You will get the following output:

Loading AIML files will take some time. To avoid initial loading time, we can dump
the AIML patterns loaded in the memory and save them to brain files. Loading brain
files will save initial loading time.

Loading AIML files and saving them in
brain files
The following code will load AIML files and save them in brain files:

#!/usr/bin/env python
import aiml
import sys
import os

os.chdir('/home/lentin/Desktop/aiml-files')
mybot = aiml.Kernel()
mybot.learn('startup.xml')
mybot.respond('load aiml b')
#Saving loaded patterns into a brain file
mybot.saveBrain('standard.brn')

while True:
 print mybot.respond(raw_input("Enter input >"))

Applying Artificial Intelligence to ChefBot Using Python

[220]

You will get the following output:

If we want to initialize the robot from the brain file or AIML files, a better way is to
use the bootstrap() method inside the Kernel() class. The bootstrap() method
takes the brain file or AIML files and some command as argument. The code for
loading the brain file if it exists is in the following section; otherwise, load it from
AIML and save a new brain file. After this process is complete, respond from the
loaded dataset.

Loading AIML and brain files using the
Bootstrap method
The following code will load AIML files and brain files using the Bootstrap method:

#!/usr/bin/env python

import aiml
import sys
import os

#Changing current directory to the path of aiml files
#This path will change according to your location of aiml files

os.chdir('/home/lentin/Desktop/aiml-files')
mybot = aiml.Kernel()

#If there is a brain file named standard.brn, Kernel() will initialize
using bootstrap() method
if os.path.isfile("standard.brn"):
 mybot.bootstrap(brainFile = "standard.brn")

Chapter 9

[221]

else:
 #If there is not brain file, load all AIML files and save a new
brain
 mybot.bootstrap(learnFiles = "startup.xml", commands =
 "load aiml b")
 mybot.saveBrain("standard.brn")

#This loop ask for response from user and print the output from
Kernel() object
while True:
 print mybot.respond(raw_input("Enter input >"))

Integrating PyAIML into ROS
In this section, we are going to develop ROS Python nodes which can handle AIML
files. We are using the Python code that we developed in the preceding section.
The ROS version we are going to use is Indigo and the Ubuntu version we will use
is 14.04.2. We already discussed the interfacing of speech recognition and speech
synthesis in ROS and also discussed the Python code to interface AIML files. In this
section, we will make a package in ROS to handle AIML files. Currently, there are
no active packages in ROS repositories that can handle AIML files. We will build our
own package using the code that we develop.

Create a ROS package using the following dependencies. Here the sound_play
package is used for speech synthesis:

$ catkin_create_pkg ros_aiml rospy std_msgs sound_play

Create a scripts folder inside the ros_aiml package and create the following
Python files in it. Create a folder called data and copy the ALICE AIML dataset
we have already downloaded to this folder.

aiml_server.py
The following code acts as an AIML server in which an AIML client can send user
input to the server through the /chatter topic and retrieve the AIML output
response through the /response topic:

#!/usr/bin/env python
import rospy
import aiml
import os
import sys
from std_msgs.msg import String

Applying Artificial Intelligence to ChefBot Using Python

[222]

rospy.init_node('aiml_server')
mybot = aiml.Kernel()

#Creating a ROS publisher for the /response topic
response_publisher =
rospy.Publisher('response',String,queue_size=10)

#Function to load AIML files using bootstrap() method
def load_aiml(xml_file):
 #Get the path of aiml data set. We have to mention this path
 on launch file as a rosparameter
 data_path = rospy.get_param("aiml_path")
 os.chdir(data_path)
 if os.path.isfile("standard.brn"):
 mybot.bootstrap(brainFile = "standard.brn")
 else:
 mybot.bootstrap(learnFiles = xml_file, commands = "load
 aiml b")
 mybot.saveBrain("standard.brn")

#Callback function of /chatter topic. It will receive input from user
and feed to respond() method of Kernel() object. and print the results
def callback(data):
 input = data.data
 response = mybot.respond(input)
 rospy.loginfo("I heard:: %s",data.data)
 rospy.loginfo("I spoke:: %s",response)
 response_publisher.publish(response)

#Method to create subscriber in /chatter topic
def listener():
 rospy.loginfo("Starting ROS AIML Server")
 rospy.Subscriber("chatter", String, callback)
 # spin() simply keeps python from exiting until this node is
 stopped
 rospy.spin()

if __name__ == '__main__':
 load_aiml('startup.xml')
 listener()

Chapter 9

[223]

aiml_client.py
This is a simple client code that will send user input taken from the keyboard to the
AIML server. The user input is send through the /chatter topic:

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

#Creating a publisher for chatter topic
pub = rospy.Publisher('chatter', String,queue_size=10)
rospy.init_node('aiml_client')
r = rospy.Rate(1) # 10hz

while not rospy.is_shutdown():
 #Receiving text input from user
 input = raw_input("Enter your text :> ")
 #Publishing to chatter topic
 pub.publish(input)
 r.sleep()

aiml_tts_client.py
This client will transcribe the response from aiml_server and convert it to speech.
This code is adapted from the client code, as we discussed in the previous chapter
for speech synthesis, as we discussed in the previous chapter. We will use the
sound_play package to perform TTS:

#!/usr/bin/env python
import rospy, os, sys
from sound_play.msg import SoundRequest
from sound_play.libsoundplay import SoundClient
from std_msgs.msg import String

rospy.init_node('aiml_soundplay_client', anonymous = True)
soundhandle = SoundClient()
rospy.sleep(1)
soundhandle.stopAll()
print 'Starting TTS'

#Call back method to receive text from /response topic and convert
to speech
def get_response(data):
 response = data.data
 rospy.loginfo("Response ::%s",response)

Applying Artificial Intelligence to ChefBot Using Python

[224]

 soundhandle.say(response)

#Method to create a subscriber for /response topic.
def listener():
 rospy.loginfo("Starting listening to response")
 rospy.Subscriber("response",String, get_response,queue_size=10)
 rospy.spin()
if __name__ == '__main__':
 listener()

aiml_speech_recog_client.py
This client can send the speech to text data to the AIML server instead of typing on
the keyboard. Before running this code, we have to launch the Pocket Sphinx speech
recognizer. We can see how to run this code after discussing it:

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

rospy.init_node('aiml_speech_recog_client')
pub = rospy.Publisher('chatter', String,queue_size=10)
r = rospy.Rate(1) # 10hz

#The output of pocketsphinx package is sending converted text to
/recognizer/output topic. The following function is the callback
of this topic. The text will receive and send through /chatter
topic, which is received by AIML server
def get_speech(data):
 speech_text=data.data
 rospy.loginfo("I said:: %s",speech_text)
 pub.publish(speech_text)

#Creating a subscriber for pocketsphinx output topic
/recognizer/output
def listener():
 rospy.loginfo("Starting Speech Recognition")
 rospy.Subscriber("/recognizer/output", String, get_speech)
 rospy.spin()

if __name__ == '__main__':
 listener()

Chapter 9

[225]

Let's see how these nodes communicate with the AIML server:

After creating all the scripts in the scripts folder, create another folder called
launch in the ros_aiml package to store the launch files. It helps to launch all the
nodes in a single run. Create the following launch files in the launch folder.

start_chat.launch
This launch file will launch aiml_server.py and aiml_client.py, in which the
user will receive the input as text and the response as text. The aiml_path ROS
parameter has to mention them in the launch file:

<launch>
 <param name="aiml_path" value="/home/lentin/catkin_ws/src/ros_aiml/
data" />
 <node name="aiml_server" pkg="ros_aiml" type="aiml_server.py"
output="screen">
 </node>
 <node name="aiml_client" pkg="ros_aiml" type="aiml_client.py"
output="screen">
 </node>
</launch>

Applying Artificial Intelligence to ChefBot Using Python

[226]

start_tts_chat.launch
This launch file will launch the text input and speech synthesis of the AIML response:

<launch>
 <param name="aiml_path"
 value="/home/lentin/catkin_ws/src/ros_aiml/data" />
 <node name="aiml_server" pkg="ros_aiml" type="aiml_server.py"
 output="screen">
 </node>

 <include file="$(find
 sound_play)/soundplay_node.launch">
 </include>
 <node name="aiml_tts" pkg="ros_aiml" type="aiml_tts_client.py"
 output="screen">
 </node>

 <node name="aiml_client" pkg="ros_aiml" type="aiml_client.py"
 output="screen">
 </node>
</launch>

start_speech_chat.launch
This file will launch the speech recognition client, synthesis client, and AIML server.
This will not launch pocketsphinx; we need to launch it separately. This launch
file enables you to receive text input from the speech recognizer and convert the
response to speech too:

<launch>
 <param name="aiml_path"
 value="/home/lentin/catkin_ws/src/ros_aiml/data" />
 <node name="aiml_server" pkg="ros_aiml" type="aiml_server.py"
 output="screen">
 </node>

 <include file="$(find
 sound_play)/soundplay_node.launch"></include>
 <node name="aiml_tts" pkg="ros_aiml" type="aiml_tts_client.py"
 output="screen">
 </node>

 <node name="aiml_speech_recog" pkg="ros_aiml"
 type="aiml_speech_recog_client.py" output="screen">
 </node>
</launch>

Chapter 9

[227]

After creating all the launch files, change the permission of all the launch files using
the following command, which we have to execute in the launch folder:

$ chmod +x *.launch

The folder structure of this package is given in the following diagram. After creating
this package, verify it with this diagram:

Launch the AIML server and client for text chatting using the following command:

$roslaunch ros_aiml start_chat.launch

When you launch this file, the user can input the text and the reply will be printed.

Launch the AIML server and client with text chatting and speech synthesis,
using the following command:

$ roslaunch ros_aiml start_tts_chat.launch

When you launch this file, it will start the text chatting interface and the reply text
will be synthesized using the speech synthesizer.

Start the pocketsphinx demo launch file to start speech recognition. The following
launch file is a demo that will detect some words and sentences. If we want more
accuracy, we have to train the model:

$ roslaunch pocketsphinx robocup.launch

Applying Artificial Intelligence to ChefBot Using Python

[228]

Launch the AIML server, speech recognition, and synthesis client using the
following command:

$ roslaunch ros_aiml start_speech_chat.launch

After you run the preceding launch files, the user can interact with the AIML
server using speech and the user will get the output as speech as well.

Questions
1.	 What is Artificial Intelligence?
2.	 What is the use of an AIML file?
3.	 Which are the most commonly used AIML tags?
4.	 What is the use of the PyAIML module?

Summary
In this chapter, we discussed how to add Artificial Intelligence to ChefBot in order to
interact with people. This function is an add-on to ChefBot to increase the interactivity
of the robot. We used simple AI techniques such as pattern matching and searching
in ChefBot. The pattern datasets are stored in a special type of file called AIML. The
Python interpreter module is called PyAIML. We used this to decode AIML files. The
user can store the pattern data in an AIML format and PyAIML can interpret this
pattern. This method is similar to a stimulus-response system. The user has to give
a stimulus in the form of text data and from the AIML pattern, the module finds the
appropriate reply to the user input. We saw the entire communication system of the
robot and how the robot communicates with people. It includes speech recognition
and synthesis along with AI. We already discussed speech in the previous chapter.
We also saw useful tags used in AIML and the PyAIML installation, how they work,
and some examples. Finally, we implemented the entire code in ROS along with
the speech recognition and synthesis units. In the next chapter, we will discuss the
integration of components in the robot, which we have not discussed until now.

[229]

Integration of ChefBot
Hardware and Interfacing it

into ROS, Using Python
In Chapter 2, Mechanical Design of a Service Robot, we saw the ChefBot chassis design
and now we have got the manufactured parts of this robot. In this chapter, we will
see how to assemble this robot using these parts and also the final interfacing of
sensors and other electronics components of this robot to Tiva C LaunchPad. We
have already discussed interfacing of individual robot components and sensors with
Launchpad. In this chapter, we will try to interface the necessary robotic components
and sensors of ChefBot and program it in such a way that it will receive the values
from all sensors and control the information from the PC. Launchpad will send all
sensor values via a serial port to the PC and also receive control information (such as
reset command, speed, and so on) from the PC.

After receiving sensor values from the PC, a ROS Python node will receive the
serial values and convert it to ROS Topics. There are Python nodes present in the
PC that subscribe to the sensor's data and produces odometry. The data from the
wheel encoders and IMU values are combined to calculate the odometry of the robot
and detect obstacles by subscribing to the ultrasonic sensor and laser scan also,
controlling the speed of the wheel motors by using the PID node. This node converts
the linear velocity command to differential wheel velocity. After running these
nodes, we can run SLAM to map the area and after running SLAM, we can run the
AMCL nodes for localization and autonomous navigation.

In the first section of this chapter, Building ChefBot hardware, we will see how to
assemble the ChefBot hardware using its body parts and electronics components.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[230]

Building ChefBot hardware
The first section of the robot that needs to be configured is the base plate. The base
plate consists of two motors and its wheels, caster wheels, and base plate supports.
The following image shows the top and bottom view of the base plate:

Base plate with motors, wheels, and caster wheels

Chapter 10

[231]

The base plate has a radius of 15cm and motors with wheels are mounted on the
opposite sides of the plate by cutting a section from the base plate. A rubber caster
wheel is mounted on the opposite side of the base plate to give the robot good balance
and support for the robot. We can either choose ball caster wheels or rubber caster
wheels. The wires of the two motors are taken to the top of the base plate through a
hole in the center of the base plate. To extend the layers of the robot, we will put base
plate supports to connect the next layers. Now, we can see the next layer with the
middle plate and connecting tubes. There are hollow tubes, which connect the base
plate and the middle plate. A support is provided on the base plate for hollow tubes.
The following figure shows the middle plate and connecting tubes:

Middle plate with connecting tubes

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[232]

The connecting tubes will connect the base plate and the middle plate. There are four
hollow tubes that connect the base plate to the middle plate. One end of these tubes
is hollow, which can fit in the base plate support, and the other end is inserted with
a hard plastic with an option to put a screw in the hole. The middle plate has no
support except four holes:

Fully assembled robot body

Chapter 10

[233]

The middle plate male connector helps to connect the middle plate and the top of the
base plate tubes. At the top of the middle plate tubes, we can fit the top plate, which
has four supports on the back. We can insert the top plate female connector into the
top plate support and this is how we will get the fully assembled body of the robot.

The bottom layer of the robot can be used to put the Printed Circuit Board (PCB)
and battery. In the middle layer, we can put Kinect and Intel NUC. We can put a
speaker and a mic if needed. We can use the top plate to carry food. The following
figure shows the PCB prototype of robot; it consists of Tiva C LaunchPad, a motor
driver, level shifters, and provisions to connect two motors, ultrasonic, and IMU:

ChefBot PCB prototype

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[234]

The board is powered with a 12 V battery placed on the base plate. The two motors
can be directly connected to the M1 and M2 male connectors. The NUC PC and
Kinect are placed on the middle plate. The Launchpad board and Kinect should be
connected to the NUC PC via USB. The PC and Kinect are powered using the same
12 V battery itself. We can use a lead-acid or lithium-polymer battery. Here, we are
using a lead-acid cell for testing purposes. We will migrate to lithium-polymer for
better performance and better backup. The following figure shows the complete
assembled diagram of ChefBot:

Fully assembled robot body

After assembling all the parts of the robot, we will start working with the robot
software. ChefBot's embedded code and ROS packages are available in GitHub.
We can clone the code and start working with the software.

Chapter 10

[235]

Configuring ChefBot PC and setting
ChefBot ROS packages
In ChefBot, we are using Intel's NUC PC to handle the robot sensor data and its
processing. After procuring the NUC PC, we have to install Ubuntu 14.04.2 or the
latest updates of 14.04 LTS. After the installation of Ubuntu, install complete ROS
and its packages we mentioned in the previous chapters. We can configure this PC
separately, and after the completion of all the settings, we can put this in to the robot.
The following are the procedures to install ChefBot packages on the NUC PC.

Clone ChefBot's software packages from GitHub using the following command:

$ git clone https://github.com/qboticslabs/Chefbot_ROS_pkg.git

We can clone the code in our laptop and copy the chefbot folder to Intel's NUC PC.
The chefbot folder consists of the ROS packages of ChefBot. In the NUC PC, create a
ROS catkin workspace, copy the chefbot folder and move it inside the src directory
of the catkin workspace.

Build and install the source code of ChefBot by simply using the following command
This should be executed inside the catkin workspace we created:

$ catkin_make

If all dependencies are properly installed in NUC, then the ChefBot packages will
build and install in this system. After setting the ChefBot packages on the NUC
PC, we can switch to the embedded code for ChefBot. Now, we can connect all the
sensors in Launchpad. After uploading the code in Launchpad, we can again discuss
ROS packages and how to run it. The cloned code from GitHub contains Tiva C
LaunchPad code, which is going to be explained in the upcoming section.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[236]

Interfacing ChefBot sensors with Tiva C
LaunchPad
We have discussed interfacing of individual sensors that we are going to use in
ChefBot. In this section, we will discuss how to integrate sensors into the Launchpad
board. The Energia code to program Tiva C LaunchPad is available on the cloned files
at GitHub. The connection diagram of Tiva C LaunchPad with sensors is as follows.
From this figure, we get to know how the sensors are interconnected with Launchpad:

Sensor interfacing diagram of ChefBot

M1 and M2 are two differential drive motors that we are using in this robot. The
motors we are going to use here is DC Geared motor with an encoder from Pololu.
The motor terminals are connected to the VNH2SP30 motor driver from Pololu.
One of the motors is connected in reverse polarity because in differential steering,
one motor rotates opposite to the other. If we send the same control signal to both
the motors, each motor will rotate in the opposite direction. To avoid this condition,
we will connect it in opposite polarities. The motor driver is connected to Tiva C
LaunchPad through a 3.3 V-5 V bidirectional level shifter. One of the level shifter we
will use here is available at: https://www.sparkfun.com/products/12009.

https://www.sparkfun.com/products/12009

Chapter 10

[237]

The two channels of each encoder are connected to Launchpad via a level shifter.
Currently, we are using one ultrasonic distance sensor for obstacle detection. In
future, we could expand this number, if required. To get a good odometry estimate,
we will put IMU sensor MPU 6050 through an I2C interface. The pins are directly
connected to Launchpad because MPU6050 is 3.3 V compatible. To reset Launchpad
from ROS nodes, we are allocating one pin as the output and connected to reset pin
of Launchpad. When a specific character is sent to Launchpad, it will set the output
pin to high and reset the device. In some situations, the error from the calculation
may accumulate and it can affect the navigation of the robot. We are resetting
Launchpad to clear this error. To monitor the battery level, we are allocating another
pin to read the battery value. This feature is not currently implemented in the
Energia code.

The code you downloaded from GitHub consists of embedded code. We can see the
main section of the code here and there is no need to explain all the sections because
we already discussed it.

Embedded code for ChefBot
The main sections of the Launchpad code is discussed here. The following are the
header files used in the code:

//Library to communicate with I2C devices
#include "Wire.h"
//I2C communication library for MPU6050
#include "I2Cdev.h"
//MPU6050 interfacing library
#include "MPU6050_6Axis_MotionApps20.h"
//Processing incoming serial data
#include <Messenger.h>
//Contain definition of maximum limits of various data type
#include <limits.h>

The main libraries used in this code are for the purpose of communicating with MPU
6050 and process the incoming serial data to Launchpad. MPU 6050 can provide
the orientation in quaternion or Euler values by using the inbuilt Digital Motion
Processor (DMP). The functions to access DMP is written in MPU6050_6Axis_
MotionApps20.h. This library has dependencies such as I2Cdev.h and Wire.h; that's
why we are including these headers as well. These two libraries are used for I2C
communication. The Messenger.h library allows you to handle a stream of text data
from any source and helps to extract the data from it. The limits.h header contains
definitions of maximum limits of various data types.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[238]

After we include the header files, we need to create an object to handle MPU6050 and
process the incoming serial data using the Messenger class:

//Creating MPU6050 Object
MPU6050 accelgyro(0x68);
//Messenger object
Messenger Messenger_Handler = Messenger();

After declaring the messenger object, the main section is to assign pins for the motor
driver, encoder, ultrasonic sensor, MPU 6050, reset, and battery pins. After assigning
the pins, we can see the setup() function of the code. The definition of the setup()
function is given here:

//Setup serial, encoders, ultrasonic, MPU6050 and Reset functions
void setup()
{
 //Init Serial port with 115200 baud rate
 Serial.begin(115200);
 //Setup Encoders
 SetupEncoders();
 //Setup Motors
 SetupMotors();
 //Setup Ultrasonic
 SetupUltrasonic();
 //Setup MPU 6050
 Setup_MPU6050();
 //Setup Reset pins
 SetupReset();
 //Set up Messenger object handler
 Messenger_Handler.attach(OnMssageCompleted);
}

The preceding function contains custom routine to configure and allocate pins
for all the sensors. This function will initialize serial communication with 115,200
baud rate and set pins for the encoder, motor driver, ultrasonic, and MPU6050.
The SetupReset() function will assign a pin to reset the device, as shown in the
connection diagram. We have already seen the setup routines of each sensors in the
previous chapters, so there is no need to explain the definition of each functions.
The Messenger class handler is attached to a function called OnMssageCompleted(),
which will be called when a data is input to the Messenger_Handler.

Chapter 10

[239]

The following is the main loop() function of the code. The main purpose of this
function is to read and process serial data and send available sensor values as well:

void loop()
{
 //Read from Serial port
 Read_From_Serial();
 //Send time information through serial port
 Update_Time();
 //Send encoders values through serial port
 Update_Encoders();
 //Send ultrasonic values through serial port
 Update_Ultra_Sonic();
 //Update motor speed values with corresponding speed received from
PC and send speed values through serial port
 Update_Motors();
 //Send MPU 6050 values through serial port
 Update_MPU6050();
 //Send battery values through serial port
 Update_Battery();
}

The Read_From_Serial() function will read serial data from the PC and feed data
to the Messenger_Handler handler for processing purpose. The Update_Time()
function will update the time after each operation in the embedded board. We
can take this time value to process in the PC or take the PC time for processing.

We can compile the code in Energia IDE and can burn the code in Launchpad.
After uploading the code, we can discuss the ROS nodes to handle the Launchpad
sensor values.

Writing a ROS Python driver for ChefBot
After uploading the embedded code to Launchpad, the next step is to handle the
serial data from Launchpad and convert it to ROS Topics for further processing.
The launchpad_node.py ROS Python driver node interfaces Tiva C LaunchPad
to ROS. The launchpad_node.py file is on the script folder, which is inside the
chefbot_bringup package. The following is the explanation of launchpad_node.py
in important code sections:

#ROS Python client
import rospy
import sys

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[240]

import time
import math

#This python module helps to receive values from serial port which
execute in a thread
from SerialDataGateway import SerialDataGateway
#Importing required ROS data types for the code
from std_msgs.msg import Int16,Int32, Int64, Float32,
String, Header, UInt64
#Importing ROS data type for IMU
from sensor_msgs.msg import Imu

The launchpad_node.py file imports the preceding modules. The main modules
we can see is SerialDataGateway. This is a custom module written to receive
serial data from the Launchpad board in a thread. We also need some data types
of ROS to handle the sensor data. The main function of the node is given in the
following code snippet:

if __name__ =='__main__':
 rospy.init_node('launchpad_ros',anonymous=True)
 launchpad = Launchpad_Class()
 try:

 launchpad.Start()
 rospy.spin()
 except rospy.ROSInterruptException:
 rospy.logwarn("Error in main function")

 launchpad.Reset_Launchpad()
 launchpad.Stop()

The main class of this node is called Launchpad_Class(). This class contains all the
methods to start, stop, and convert serial data to ROS Topics. In the main function,
we will create an object of Launchpad_Class(). After creating the object, we will
call the Start() method, which will start the serial communication between Tiva C
LaunchPad and PC. If we interrupt the driver node by pressing Ctrl + C, it will reset
the Launchpad and stop the serial communication between the PC and Launchpad.

The following code snippet is from the constructor function of Launchpad_Class().
In the following snippet, we will retrieve the port and baud rate of the Launchpad
board from ROS parameters and initialize the SerialDateGateway object using
these parameters. The SerialDataGateway object calls the _HandleReceivedLine()
function inside this class when any incoming serial data arrives on the serial port.

Chapter 10

[241]

This function will process each line of serial data and extract, convert, and insert it to
the appropriate headers of each ROS Topic data type:

#Get serial port and baud rate of Tiva C Launchpad
port = rospy.get_param("~port", "/dev/ttyACM0")
baudRate = int(rospy.get_param("~baudRate", 115200))

###
rospy.loginfo("Starting with serial port:
" + port + ", baud rate: " + str(baudRate))

#Initializing SerialDataGateway object with serial port, baud
 rate and callback function to handle incoming serial data
self._SerialDataGateway = SerialDataGateway(port,
baudRate, self._HandleReceivedLine)
rospy.loginfo("Started serial communication")

##Subscribers and Publishers

#Publisher for left and right wheel encoder values
self._Left_Encoder = rospy.Publisher('lwheel',Int64,queue_size
= 10)
self._Right_Encoder = rospy.Publisher('rwheel',Int64,queue_size
= 10)

#Publisher for Battery level(for upgrade purpose)
self._Battery_Level =
rospy.Publisher('battery_level',Float32,queue_size = 10)
#Publisher for Ultrasonic distance sensor
self._Ultrasonic_Value =
rospy.Publisher('ultrasonic_distance',Float32,queue_size = 10)

#Publisher for IMU rotation quaternion values
self._qx_ = rospy.Publisher('qx',Float32,queue_size = 10)
self._qy_ = rospy.Publisher('qy',Float32,queue_size = 10)
self._qz_ = rospy.Publisher('qz',Float32,queue_size = 10)
self._qw_ = rospy.Publisher('qw',Float32,queue_size = 10)

#Publisher for entire serial data
self._SerialPublisher = rospy.Publisher('serial',
String,queue_size=10)

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[242]

We will create the ROS publisher object for sensors such as the encoder, IMU, and
ultrasonic sensor as well as for the entire serial data for debugging purpose. We will
also subscribe the speed commands for the left-hand side and the right-hand side
wheel of the robot. When a speed command arrives on Topic, it calls the respective
callbacks to send speed commands to the robot's Launchpad:

self._left_motor_speed = rospy.Subscriber('left_wheel_
speed',Float32,self._Update_Left_Speed)
self._right_motor_speed = rospy.Subscriber('right_wheel_
speed',Float32,self._Update_Right_Speed)

After setting the ChefBot driver node, we need to interface the robot to a ROS
navigation stack in order to perform autonomous navigation. The basic requirement
for doing autonomous navigation is that the robot driver nodes, receive velocity
command from ROS navigational stack. The robot can be controlled using
teleoperation. In addition to these features, the robot must be able to compute its
positional or odometry data and generate the tf data for sending into navigational
stack. There must be a PID controller to control the robot motor velocity. The
following ROS package helps to perform these functions. The differential_drive
package contains nodes to perform the preceding operation. We are reusing these
nodes in our package to implement these functionalities. The following is the link for
the differential_drive package in ROS:

http://wiki.ros.org/differential_drive

The following figure shows how these nodes communicate with each other. We can
also discuss the use of other nodes too:

http://wiki.ros.org/differential_drive

Chapter 10

[243]

The purpose of each node in the chefbot_bringup package is as follows:

•	 twist_to_motors.py: This node will convert the ROS Twist command or
linear and angular velocity to individual motor velocity target. The target
velocities are published at a rate of the ~rate Hertz and the publish timeout_
ticks times velocity after the Twist message stops. The following are the
Topics and parameters that will be published and subscribed by this node:

°° Publishing Topics:
°° lwheel_vtarget (std_msgs/Float32): This is the the target

velocity of the left wheel(m/s).
°° rwheel_vtarget (std_msgs/Float32): This is the target

velocity of the right wheel(m/s).

°° Subscribing Topics:
°° Twist (geometry_msgs/Twist): This is the target Twist

command for the robot. The linear velocity in the x direction
and angular velocity theta of the Twist messages are used
in this robot.

°° Important ROS parameters:

°° ~base_width (float, default: 0.1): This is the distance
between the robot's two wheels in meters.

°° ~rate (int, default: 50): This is the rate at which
velocity target is published(Hertz).

°° ~timeout_ticks (int, default:2): This is the number
of the velocity target message published after stopping
the Twist messages.

•	 pid_velocity.py: This is a simple PID controller to control the speed of
each motors by taking feedback from wheel encoders. In a differential drive
system, we need one PID controller for each wheel. It will read the encoder
data from each wheels and control the speed of each wheels.

°° Publishing Topics:
°° motor_cmd (Float32): This is the final output of the

PID controller that goes to the motor. We can change the
range of the PID output using the out_min and out_max
ROS parameter.

°° wheel_vel (Float32): This is the current velocity of the robot
wheel in m/s.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[244]

°° Subscribing Topics:
°° wheel (Int16): This Topic is the output of a rotary encoder.

There are individual Topics for each encoder of the robot.
°° wheel_vtarget (Float32): This is the target velocity in m/s.

°° Important parameters:

°° ~Kp (float ,default: 10): This parameter is the
proportional gain of the PID controller.

°° ~Ki (float, default: 10): This parameter is the integral
gain of the PID controller.

°° ~Kd (float, default: 0.001): This parameter is the
derivative gain of the PID controller.

°° ~out_min (float, default: 255): This is the minimum
limit of the velocity value to motor. This parameter limits
the velocity value to motor called wheel_vel Topic.

°° ~out_max (float, default: 255): This is the maximum
limit of wheel_vel Topic(Hertz).

°° ~rate (float, default: 20): This is the rate of publishing
wheel_vel Topic.

°° ticks_meter (float, default: 20): This is the number
of wheel encoder ticks per meter. This is a global parameter
because it's used in other nodes too.

°° vel_threshold (float, default: 0.001): If the robot
velocity drops below this parameter, we consider the
wheel as stopped. If the velocity of the wheel is less than
vel_threshold, we consider it as zero.

°° encoder_min (int, default: 32768): This is the minimum
value of encoder reading.

°° encoder_max (int, default: 32768): This is the maximum
value of encoder reading.

°° wheel_low_wrap (int, default: 0.3 * (encoder_max
- encoder_min) + encoder_min): These values decide
whether the odometry is in negative or positive direction.

°° wheel_high_wrap (int, default: 0.7 * (encoder_max
- encoder_min) + encoder_min): These values decide
whether the odometry is in the negative or positive direction.

Chapter 10

[245]

•	 diff_tf.py: This node computes the transformation of odometry and
broadcast between the odometry frame and the robot base frame.

°° Publishing Topics:
°° odom (nav_msgs/odometry): This publishes the odometry

(current pose and twist of the robot.
°° tf: This provides transformation between the odometry

frame and the robot base link.

°° Subscribing Topics:
°° lwheel (std_msgs/Int16), rwheel (std_msgs/Int16):

These are the output values from the left and right encoder
of the robot.

•	 chefbot_keyboard_teleop.py: This node sends the Twist command using
controls from the keyboard.

°° Publishing Topics:

°° cmd_vel_mux/input/teleop (geometry_msgs/Twist):
This publishes the twist messages using keyboard commands.

After discussing nodes in the chefbot_bringup package, we will look at the
functions of launch files.

Understanding ChefBot ROS launch files
We will discuss the functions of each launch files of the chefbot_bringup package.

•	 robot_standalone.launch: The main function of this launch file
is to start nodes such as launchpad_node, pid_velocity, diff_tf,
and twist_to_motor to get sensor values from the robot and to send
command velocity to the robot.

•	 keyboard_teleop.launch: This launch file will start the teleoperation by
using the keyboard. This launch starts the chefbot_keyboard_teleop.py
node to perform the keyboard teleoperation.

•	 3dsensor.launch : This file will launch Kinect OpenNI drivers and start
publishing RGB and depth stream. It will also start the depth stream to laser
scanner node, which will convert point cloud to laser scan data.

•	 gmapping_demo.launch: This launch file will start SLAM gmapping nodes
to map the area surrounding the robot.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[246]

•	 amcl_demo.launch: Using AMCL, the robot can localize and predict where
it stands on the map. After localizing on the map, we can command the robot
to move to a position on the map, then the robot can move autonomously
from its current position to the goal position.

•	 view_robot.launch: This launch file displays the robot URDF
model in RViz.

•	 view_navigation.launch: This launch file displays all the sensors necessary
for the navigation of the robot.

Working with ChefBot Python nodes and
launch files
We already set ChefBot ROS packages in Intel's NUC PC and uploaded the
embedded code to the Launchpad board. The next step is to put the NUC PC on the
robot, configure remote connection from the laptop to the robot, testing each nodes,
and working with ChefBot Launch files to perform autonomous navigation.

The main device we should have before working with ChefBot is a good wireless
router. The robot and the remote laptop have to connect on the same network. If the
robot PC and remote laptop are on the same network, the user can connect from the
remote laptop to the robot PC through SSH using its IP. Before putting the robot PC
in the robot, we should connect the robot PC in the wireless network, so once it's
connected to the wireless network, it will remember the connection details. When the
robot powers, the PC should automatically connect to the wireless network. Once the
robot PC is connected to the wireless network, we can put it in the actual robot. The
following figure shows the connection diagram of the robot and remote PC:

Wireless connection diagram of the robot and remote PC

The preceding figure assumes that the ChefBot IP is 192.168.1.106 and the remote PC
IP is 192.168.1.101.

Chapter 10

[247]

We can remotely access the ChefBot terminal using SSH. We can use the following
command to log in to ChefBot, where robot is the username of ChefBot PC:

$ ssh robot@192.168.1.106

When you log in to ChefBot PC, it will ask for the robot PC password. After entering
the password of the robot PC, we can access the robot PC terminal. After logging in
to the robot PC, we can start testing the ROS nodes of ChefBot and test whether we
can receive the serial values from the Launchpad board inside ChefBot. Note that
you should log in again to ChefBot PC through SSH if you are using a new terminal.

If the Chefbot_bringup package is properly installed on the PC and if the
Launchpad board is connected, then before running the ROS driver node, we can
run the miniterm.py tool to check whether the serial values come properly to the PC
via USB. We can find the serial device name using the dmesg command. We can run
miniterm.py using the following command:

$ miniterm.py /dev/ttyACM0 115200

If it shows the permission denied message, set the permission of the USB device
by writing rules on the udev folder as we did in Chapter 5, Working with Robotic
Actuators and Wheel Encoders of this book or we can temporarily change the
permission using the following command. We are assuming ttyACM0 is the device
name of Launchpad. If the device name is different in your PC, then you have to
use that name instead of ttyACM0:

$ sudo chmod 777 /dev/ttyACM0

If everything works fine, we will get values like those shown in following screenshot:

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[248]

The letter b is used to indicate the battery reading of the robot; currently, it's not
implemented. The value is set to zero now. The letter t indicates the total time in
microseconds after the robot starts running the embedded code. The second value is
time in seconds; it's the time taken to complete one entire operation in Launchpad.
We can use this value if we are performing real-time calculations of the parameters
of the robot. Currently, we are not using this value; we may use this in the future.
The letter e indicates values of the left and right encoder respectively. Both the
values are zero here because the robot is not moving. The letter u indicates the values
from the ultrasonic distance sensor. The distance value we get is in centimeters.
The letter s indicates the current robot wheel speed of the robot. This value is for
inspection purpose. Actually, speed is a control output from the PC itself.

To convert these serial data to ROS Topics, we have to run the drive node called
launchpad_node.py. The following code shows how to execute this node.

First, we have to run roscore before starting any nodes:

$ roscore

Run launchpad_node.py using the following command:

$ rosrun chefbot_bringup launchpad_node.py

If everything works fine, we will get the following output in the node
running terminal:

After running launchpad_node.py, we will see the following Topics generated, as
given in the following screenshot:

Chapter 10

[249]

We can view the serial data received by driver node by subscribing /serial Topic.
We can use it for debug purposes. If the serial Topic shows the same data as we saw
on miniterm.py, then we can confirm that the nodes are working fine. The following
screenshot is the output of /serial Topic:

After setting the chefbot_bringup package, we can start working with the
autonomous navigation of ChefBot. Currently, we are accessing only the ChefBot
PC's terminal. To visualize the robot model, sensor data, maps, and so on, we have
to use RViz in the user's PC. We have to do some configuration in the robot and user
PC to perform this operation. It should be noted that the user's PC should have the
same software setup as in the ChefBot PC.

The first thing we have to do is, set the ChefBot PC as a ROS master. We can set the
ChefBot PC as the ROS master by setting the ROS_MASTER_URI value. ROS_MASTER_URI
is a required setting, It informs the nodes about the Uniform Resource Identifier (URI)
of the ROS master. When you set the same ROS_MASTER_URI for the ChefBot PC and
the remote PC, we can access the Topics of the ChefBot PC in the remote PC. So, if we
run RViz locally, then it will visualize the Topics generated in the ChefBot PC.

Assume that the ChefBot PC IP is 192.168.1.106 and the remote PC IP is 192.168.1.101.
To set ROS_MASTER_URI in each system, the following command should include
the .bashrc file in the home folder. The following figure shows the setup needed to
include .bashrc in each system:

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[250]

Add these lines at the bottom of .bashrc on each PC and change the IP address
according to your network.

After we perform these settings, we can just start roscore on the ChefBot PC
terminal and execute command rostopic list on the remote PC.

If you see any Topics, you are done with the settings. We can first run the robot using
the keyboard teleoperation to check the robot's functioning and confirm whether we
get the sensor values.

We can start the robot driver and other nodes using the following command.
Note that this should execute in the ChefBot terminal after login, using SSH:

$ roslaunch chefbot_bringup robot_standalone.launch

After launching the robot driver and nodes, start the keyboard teleoperation
using the following command. This also has to be done on the new terminal of
the ChefBot PC:

$ roslaunch chefbot_bringup keyboard_teleop.launch

To activate Kinect, execute the following command. This command is also executed
on the ChefBot terminal:

$roslaunch chefbot_bringup 3dsensor.launch

To view sensor data, we can execute the following command. This will view
the robot model in RViz and should be executed in the remote PC. If we set up
the chefbot_bringup package in the remote PC, we can access the following
command and visualize the robot model and sensor data from ChefBot PC:

$ roslaunch chefbot_bringup view_robot.launch

Chapter 10

[251]

The following screenshot is the output of RViz. We can see LaserScan and
PointCloud in the screenshots:

ChefBot LaserScan data in RViz

The preceding screenshot shows LaserScan in RViz. We need to tick LaserScan
Topic from the left-hand side section of RViz to enable the laser scan data. The laser
scan data is marked on the viewport. If you want to watch the Point Cloud data from
Kinect, click on the Add button on the left-hand side of RViz and select PointCloud2
from the pop up window.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[252]

Select Topic /camera/depth_registered from the list and you will see the
following screenshot:

ChefBot with Point Cloud data

After working with sensors, we can perform SLAM to map the room. The following
procedure helps to start SLAM on this robot.

Working with SLAM on ROS to build the map
of the room
To perform gmapping, we have to execute the following commands:

Starting the robot driver in the ChefBot terminal:

$ roslaunch chefbot_bringup robot_standalone.launch

Execute the following command to start the gmapping process. Note that it should
be executed on the ChefBot terminal:

$ roslaunch chefbot_bringup gmapping_demo.launch

Chapter 10

[253]

Gmapping will only work if the odometry value received is proper. If the
odometry value is received from the robot, we will receive the following message
for the preceding command. If we get this message, we can confirm that gmapping
will work fine:

To start the keyboard teleoperation, use the following command:

$ roslaunch chefbot_bringup keyboard_teleop.launch

To view the map being created, we need to start RViz in the remote system using
the following command:

$ roslaunch chefbot_bringup view_navigation.launch

After viewing the robot in RViz, you can move the robot using the keyboard and see
the map being created. When it maps the entire area, we can save the map using the
following command on the ChefBot PC terminal:

$rosrun map_server map_saver -f ~/test_map

where test_map is the name of the map being stored on the home folder.
The following screenshot shows the map of a room created by the robot:

Mapping a room

After the map is stored, we can work with the localization and autonomous
navigation using ROS.

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[254]

Working with ROS localization and navigation
After building the map, close all the applications and rerun the robot driver using
the following command:

$ roslaunch chefbot_bringup robot_standalone.launch

Start localization and navigation on the stored map using the following command:

$ roslaunch chefbot_bringup amcl_demo.launch map_file:=~/test_map.yaml

Start viewing the robot using the following command in the remote PC:

$ roslaunch chefbot_bringup view_navigation.launch

In RViz, we may need to specify the initial pose of the robot using the 2D Pose
Estimate button. We can change the robot pose on the map using this button. If the
robot is able to locate the map, then we can use the 2D Nav Goal button to command
the robot to move to the desired position. When we start localization, we can see the
particle cloud by the AMCL algorithm around the robot:

Chapter 10

[255]

The following is a screenshot of the robot that navigates autonomously from the
current position to the goal position. The goal position is marked as a black dot:

The black line from the robot to the black dot is the robot's planned path to
reach the goal position. If the robot is not able to locate the map, we might need to
fine-tune the parameter files in the Chefbot_bringup param folder. For more fine
tuning details, you can go through the AMCL package on ROS. You can visit the
following link:

http://wiki.ros.org/amcl?distro=indigo

Questions
1.	 What is use of the robot ROS driver node?
2.	 What is the role of the PID controller in navigation?
3.	 How to convert the encoder data to odometry data?
4.	 What is role of SLAM in robot navigation?
5.	 What is role of AMCL in robot navigation?

http://wiki.ros.org/amcl?distro=indigo

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

[256]

Summary
This chapter was about assembling the hardware of ChefBot and integrating
the embedded and ROS code into the robot to perform autonomous navigation.
We saw the robot hardware parts that were manufactured using the design
from Chapter 5, Working with Robotic Actuators and Wheel Encoders. We assembled
individual sections of the robot and connected the prototype PCB that we designed
for the robot. This consists of the Launchpad board, motor driver, left shifter,
ultrasonic, and IMU. The Launchpad board was flashed with the new embedded
code, which can interface all sensors in the robot and can send or receive data from
the PC. After discussing the embedded code, we wrote the ROS Python driver
node to interface the serial data from the Launchpad board. After interfacing the
Launchpad board, we computed the odometry data and differential drive controlling
using nodes from the differential_drive package that existed in the ROS
repository. We interfaced the robot to ROS navigation stack. This enables to perform
SLAM and AMCL for autonomous navigation. We also discussed SLAM, AMCL,
created map, and executed autonomous navigation on the robot.

[257]

Designing a GUI for a Robot
Using Qt and Python

In the last chapter, we discussed the integration of robotic hardware components and
software packages for performing autonomous navigation. After the integration, the
next step is to build a GUI to control the robot. We are building a GUI that can act as
a trigger for the underlying ROS commands. Instead of running all the commands
on the terminal, the user can work with the GUI buttons. The GUI we are going to
design is for a typical hotel room with nine tables. The user can set a table position
in the map of the hotel room and command the robot to go to a particular table to
deliver food. After delivering the food, the user can command the robot to go to its
home position.

Some of the most popular GUI frameworks currently available are Qt
(http://qt.digia.com) and GTK+ (http://www.gtk.org/), Qt and GTK+ are
open source, cross-platform user interface toolkits and development platforms.
These two software frameworks are widely used in Linux desktop environments,
like GNOME and KDE.

In this chapter, we will be using Python binding of the Qt framework to implement
the GUI because Python binding of Qt is more stable than other UI Python bindings.
We can see how to develop a GUI from scratch and program it using Python. After
discussing basic Python and Qt programming, we will discuss ROS interfaces of Qt,
which are already available in ROS. We will first look at what is the Qt UI framework
is and how to install it on our PC.

http://qt.digia.com
http://www.gtk.org/

Designing a GUI for a Robot Using Qt and Python

[258]

Installing Qt on Ubuntu 14.04.2 LTS
Qt is a cross-platform application framework that is widely used to develop
application software with a GUI interface as well as command line tools. Qt is
available on almost all operating systems, like Windows, Mac OS X, Android, and
so on. The main programming language used for developing Qt applications is C++
but there are bindings available for languages such as Python, Ruby, Java, and so on.
Let's take a look at how to install Qt SDK on Ubuntu 14.04.2. We will install Qt from
the Advance Packaging Tool (APT) in Ubuntu. The APT already comes with the
Ubuntu installation. So for installing Qt/Qt SDK, we can simply use the following
command, which will install Qt SDK and its required dependencies from the Ubuntu
package repository. We can install Qt version 4 using the following command:

$ sudo apt-get install qt-sdk

This command will install the entire Qt SDK and its libraries required for our project.
The packages available on Ubuntu repositories may not be the latest versions. To
get the latest version of Qt, we can download the online or offline installer of Qt for
various OS platforms from the following link:

http://qt-project.org/downloads

After installing Qt on our system, we can see how we can develop a GUI using Qt
and interface with Python.

Working with Python bindings of Qt
Let's see how we can interface Python and Qt. In general, there are two modules
available in Python for connecting to the Qt user interface. The two most popular
frameworks are:

•	 PyQt
•	 PySide

PyQt
PyQt is one of the popular most Python bindings for Qt cross-platform. PyQt is
developed and maintained by Riverbank Computing Limited. It provides binding
for Qt version 4 and Qt version 5, and comes with GPL (version 2 or 3) along with
a commercial license. PyQt is available for Qt version 4 and 5, called PyQt4 and
PyQt5, respectively. These two modules are compatible with Python versions 2
and 3. PyQt contains more than 620 classes that cover user interface, XML, network
communication, web, and so on.

http://qt-project.org/downloads

Chapter 11

[259]

PyQt is available on Windows, Linux, and Mac OS X. It is a prerequisite to install Qt
SDK and Python in order to install PyQt. The binaries for Windows and Mac OS X
are available on the following link:

http://www.riverbankcomputing.com/software/pyqt/download

We can see how to install PyQt4 on Ubuntu 14.04.2 using Python 2.7.

Installing PyQt on Ubuntu 14.04.2 LTS
If you want to install PyQt on Ubuntu/Linux, use the following command.
This command will install the PyQt library, its dependencies, and some Qt tools:

$ sudo apt-get install python-qt4 pyqt4-dev-tools

PySide
PySide is an open source software project that provides Python binding for the Qt
framework. The PySide project was initiated by Nokia, and offers a full set of Qt
binding for multiple platforms. The technique used in PySide to wrap the Qt
library is different from PyQt, but the API of both is similar. PySide is currently
not supported on Qt 5. PySide is available for Windows, Linux, and Mac OS X.
The following link will guide you to set up PySide on Windows and Mac OS X:

http://qt-project.org/wiki/Category:LanguageBindings::PySide::Downloa
ds

The prerequisites of PySide are the same as PyQt. Let's see how we can install
PySide on Ubuntu 14.04.2 LTS.

Installing PySide on Ubuntu 14.04.2 LTS
The PySide package is available on the Ubuntu package repository. The following
command will install the PySide module and Qt tools on Ubuntu:

$ sudo apt-get install python-pyside pyside-tools

Let's work with both modules and see the differences between both.

Working with PyQt and PySide
After installing the PyQt and PySide packages, we can see how to write a Hello
World GUI using PyQt and PySide. The main difference between PyQt and PySide is
only in some commands; most of the steps are the same. Let's see how to make a Qt
GUI and convert it into Python code.

http://www.riverbankcomputing.com/software/pyqt/download
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Downloads
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Downloads

Designing a GUI for a Robot Using Qt and Python

[260]

Introducing Qt Designer
Qt Designer is the tool for designing and inserting control into Qt GUI. Qt GUI is
basically an XML file that contains the information of its components and controls.
The first step to work with GUI is its designing. The Qt Designer tool provides
various options to make excellent GUIs.

Start Qt Designer by entering the command designer-qt4 in the terminal.
The following image shows what you will be able to see after running this command:

The preceding image shows the Qt designer interface. Select the Widget option from
the New Form window and click on the Create button. This will create an empty
widget; we can drag various GUI controls from the left-hand side of Qt 4 designer to
the empty widget. Qt widgets are the basic building blocks of Qt GUI.

Chapter 11

[261]

The following image shows a form with a PushButton dragged from the left-hand
side window of Qt Designer:

The Hello World application that we are going to build has a PushButton,
when we click on the PushButton, a Hello World message will be printed on the
terminal. Before building the Hello World application, we need to understand what
Qt signals and slots are, because we have to use these features for building the Hello
World application.

Qt signals and slots
In Qt, GUI events are handled using the signals and slots features. A signal is emitted
from the GUI when an event occurs. Qt Widgets have many predefined signals, and
users can add custom signals for GUI events. A slot is a function that is called in
response to a particular signal. In this example, we are using the clicked() signal of
PushButton and creating a custom slot for this signal. We can write our own code on
this custom function. Let's see how we can create a button, connect a signal to a slot,
and convert the entire GUI to Python.

Designing a GUI for a Robot Using Qt and Python

[262]

Here are the steps involved in creating the Hello World GUI application:

1.	 Drag and create a PushButton from Qt Designer to the empty Form.
2.	 Assign a slot for the button clicked event, which emits a signal called

clicked().
3.	 Save the designed UI file in the .ui extension.
4.	 Convert UI files to Python.
5.	 Write the definition of the custom slot.
6.	 Print the Hello World message inside the defined slot/function.

We have already dragged a button from Qt Designer to an empty Form. Press the
F4 key to insert a slot on the button. When we press F4, the PushButton turns red,
and we can drag a line from the button and place the ground symbol() in the main
window. This is shown in the following screenshot:

Select the clicked() signal from the left-hand side and click on the Edit.. button
to create a new custom slot. When we click on the Edit.. button, another window
will pop up to create a custom function. You can create a custom function by
clicking on the + symbol.

Chapter 11

[263]

We created a custom slot called message(), as shown in the screenshot below:

Click on the OK button and save the UI file as hello_world.ui, and quit the
Qt designer. After saving the UI file, let's see how we can convert a Qt UI file
into a Python file.

Converting a UI file into Python code
After designing the UI file, we can convert the UI file into its equivalent Python code.
The conversion is done using a pyuic compiler. We have already installed this tool
while installing PyQt/PySide. The following are the commands to convert a Qt UI
file into a Python file.

We have to use different commands for PyQt and PySide. The following command
is to convert UI into its PyQt equivalent file:

$ pyuic4 -x hello_world.ui -o hello_world.py

The pyuic4 is a UI compiler to convert a UI file into its equivalent Python code.
We need to mention the UI filename after the -x argument and mention the output
filename after the -o argument.

There are not many changes for the PySide command, instead of pyuic4, PySide
uses pyside-uic to convert UI files into Python files. The remaining arguments
are the same:

$ pyside-uic -x hello_world.ui -o hello_world.py

Designing a GUI for a Robot Using Qt and Python

[264]

The preceding command will generate an equivalent Python code for the UI file. If
we run this Python code, the UI designed in Qt Designer will pop up. The generated
script will not have the definition of the custom function message(). We should add
this custom function to generate the code. The following procedure will guide you
through adding the custom function; so when you click on the button, the custom
function message() will be executed.

Adding a slot definition to PyQt code
The generated Python code from PyQt is given here. The code generated by pyuic4
and pyside-uic are the same, except in importing module names. All other parts
are the same. The explanation of the code generated using PyQt is also applicable to
PySide code . The code generated from the above conversion is as follows. The code
structure and parameters can change according to the UI file that you have designed:

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Form(object):

 def setupUi(self, Form):
 Form.setObjectName(_fromUtf8("Form"))
 Form.resize(514, 355)

 self.pushButton = QtGui.QPushButton(Form)
 self.pushButton.setGeometry(QtCore.QRect(150, 80, 191, 61))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))

 self.retranslateUi(Form)
 QtCore.QObject.connect(self.pushButton, QtCore.SIGNAL(_
fromUtf8("clicked()")), Form.message)
 QtCore.QMetaObject.connectSlotsByName(Form)

 def retranslateUi(self, Form):
 Form.setWindowTitle(QtGui.QApplication.translate("Form",
"Form", None, QtGui.QApplication.UnicodeUTF8))

Chapter 11

[265]

 self.pushButton.setText(QtGui.QApplication.translate("Form",
"Press", None, QtGui.QApplication.UnicodeUTF8))

if __name__ == "__main__":
 import sys
 app = QtGui.QApplication(sys.argv)
 Form = QtGui.QWidget()
 ui = Ui_Form()
 ui.setupUi(Form)
 Form.show()
 sys.exit(app.exec_())

The preceding code is the equivalent Python script of the Qt UI file that we designed
in the Qt designer application. Here is the step-by-step procedure of the working
of this code:

1.	 The code will start executing from if __name__ == "__main__":. The first
thing in a PyQt code is to create a QApplication object. A QApplication
class manages the GUI application's control flow and main settings. The
QApplication class contains the main event loop, where all events from the
Windows system and other sources are processed and dispatched. It also
handles initialization and finalization of an application. The QApplication
class is inside the QtGui module. This code creates an object of QApplication
called app.

2.	 The Form = QtGui.QWidget() line creates an object called Form from the
QWidget class that is present inside the QtGui module. The QWidget class is
the base class of all the user interface objects of Qt. It can receive the mouse
and keyboard event from the main Windows system.

3.	 The ui = Ui_Form() line creates an object called ui from the Ui_Form()
class defined in the code. The Ui_Form() object can accept the QWidget
class that we created in the previous line and it can add buttons, text, button
control, and other UI components into this QWidget object. The Ui_Form()
class contains two functions: setupUi() and retranslateUi(). We can
pass the QWidget object to the function called setupUi(). This function
will add UI components on this widget object such as buttons, assigning
slots for signals, and so on. The retranslateUi() function will translate
the language of the UI to other languages if needed, for example, if we need
translation from English to Spanish, we can mention the corresponding
Spanish word in this function.

4.	 The Form.show() line displays the final window with buttons and text.

Designing a GUI for a Robot Using Qt and Python

[266]

The next thing is to create the slot function, which prints the Hello World message.
The slot definition is created inside the Ui_Form() class. The following steps insert
the slot called message() into the Ui_Form() class.

The message() function definition is as follows:

 def message(self):
 print "Hello World"

This should be inserted as a function inside the Ui_Form() class. Also, change the
following line in the setupUi() function inside the Ui_Form() class:

QtCore.QObject.connect(self.pushButton, QtCore.SIGNAL(_
fromUtf8("clicked()")), Form.message)

The Form.message parameter should be replaced with the self.message
parameter. The preceding line connects the PushBbutton signal clicked() to
the self.message() slot that we already inserted in the Ui_Form() class.

Up and running of Hello World GUI application
After replacing the Form.message parameter with the self.message parameter,
we can execute the code and the output will look like this:

When we click on the Press button, it will print the Hello world message.
This is all about setting a custom GUI with Python and Qt.

In the next section, we will see the actual GUI that we are designing for the robot.

Chapter 11

[267]

Working with ChefBot's control GUI
After completing the Hello World application in PyQt, next we can discuss a GUI
for controlling ChefBot. The main use of building a GUI is to create an easier way
to control the robot, for example, if the robot is deployed in a hotel to serve food,
the person who controls this robot need not have knowledge about the complex
commands to start and stop this robot; so building a GUI for ChefBot can reduce the
complexity and make it easier for the user. We are planning to build a GUI using
PyQt, ROS and Python interface. The ChefBot ROS package is available on GitHub
on the following link:

https://github.com/qboticslabs/Chefbot_ROS_pkg.git

If you haven't cloned the code yet, you can do it now using following command:

$ git clone https://github.com/qboticslabs/Chefbot_ROS_pkg.git

The GUI code named robot_gui.py is placed in the scripts folder, which is inside
the chefbot_bringup package.

The following screenshot shows the GUI that we have designed for ChefBot:

https://github.com/qboticslabs/Chefbot_ROS_pkg.git

Designing a GUI for a Robot Using Qt and Python

[268]

The GUI has the following features:

•	 It can monitor robot battery status and robot status. Robot status indicates
the working status of the robot, for example, if the robot encounters an error,
it will indicate the error on this GUI.

•	 It can command the robot to move into a table position for delivering food.
There is a spin box widget on the GUI to input the table position. Currently,
we are planning this GUI for a nine table room, but we may expand it into
any number according to requirement. After inputting the table number, we
can command the robot to go to that table by clicking on the Go button; the
robot will get into that position. If we want to return the robot to the initial
position, we can click on the Home button. If we want to cancel the current
robot movement, click on Cancel to stop the robot. The working of this GUI
application is as follows:

When we have to deploy ChefBot in a hotel, the first procedure that we have to do
is to create a map of the room. After mapping the entire room properly, we have
to save the map on the robot's PC. The robot does the mapping only once, after
mapping we can run the localization and navigation routines, and command the
robot to get into a position on the map. The ChefBot ROS package comes with a map
and simulation model of a hotel-like environment. We can run this simulation and
localization now for testing the GUI and in the next chapter, we can discuss how to
control the hardware using the GUI. If you install ChefBot ROS packages on your
local system, we can simulate a hotel environment and test the GUI.

Start the ChefBot simulation in a hotel-like arrangement using the following
command:

$roslaunch chefbot_gazebo chefbot_hotel_world.launch

After starting the ChefBot simulation, we can run the localization and navigation
routines using an already built map. The map is placed on the chefbot_bringup
package. We can see a map folder inside this package. Here, we will use this map for
performing this test. We can load the localization and navigation routine using the
following command:

$ roslaunch chefbot_gazebo amcl_demo.launch
map_file:=/home/lentin/catkin_ws/src/chefbot/chefbot_bringup/map/hotel1.
yaml

The path of the map file can change in a different system, so use the path in your
system instead of this path.

Chapter 11

[269]

If the path mentioned is correct, it will start running the ROS navigation stack.
If we want to see the robot position on the map or manually set the initial position
of robot, we can use RViz using the following command:

$ roslaunch chefbot_bringup view_navigation.launch

In RViz, we can command the robot to go to any map coordinates using the 2D Nav
Goal button.

We can command the robot to go to any map coordinates using programming too.
The ROS navigation stack is working using the ROS actionlib library. The ROS
actionlib library is for performing preemptable tasks, it is similar to ROS Services.
An advantage over ROS services is that we can cancel the request if we don't want it
at that time.

In the GUI, we can command the robot to go to a map coordinate using
Python actionlib library. We can get the table position on the map using the
following technique.

After starting the simulator and AMCL nodes, launch the keyboard teleoperation
and move the robot near each table. Use the following command to get the
translation and rotation of the robot:

$ rosrun tf tf_echo /map /base_link

When we click on the Go button, that position is fed to the navigation stack and the
robot plans its path and reaches its goal. We can even cancel the task at anytime. So
the ChefBot GUI acts as an actionlib client, which sends map coordinates to the
actionlib server, that is, the navigation stack.

We can run the robot GUI now to control the robot using the following command:

$ rosrun chefbot_bringup robot_gui.py

We can select a table number and click on the Go button for moving robot to
each table.

Assuming that you cloned the files and got the robot_gui.py file, we can discuss
the main slots we added into the Ui_Form() class for the actionlib client and to
get values of battery level and robot status.

We need to import the following Python modules for this GUI application:

import rospy
import actionlib
from move_base_msgs.msg import *
import time
from PyQt4 import QtCore, QtGui

Designing a GUI for a Robot Using Qt and Python

[270]

The additional modules we require are ROS Python client rospy, and the actionlib
module to send values to the navigation stack. The move_base_msgs module contains
the message definition of the goal that needs to be sent to the navigation stack.

The robot position near each table is mentioned in a Python dictionary. The
following code shows hardcode values of the robot's position near each table:

table_position = dict()
table_position[0] = (-0.465, 0.37, 0.010, 0, 0, 0.998, 0.069)
table_position[1] = (0.599, 1.03, 0.010, 0, 0, 1.00, -0.020)
table_position[2] = (4.415, 0.645, 0.010, 0, 0, -0.034, 0.999)
table_position[3] = (7.409, 0.812, 0.010, 0, 0, -0.119, 0.993)
table_position[4] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[5] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[6] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[7] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[8] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[9] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)

We can access the position of the robot near each table by accessing this dictionary.

Currently, we have inserted only four values for a demonstration purpose. You can
add more values by finding the position of other tables.

We are assigning some variables to handle the table number, the position of robot
and the actionlib client inside the Ui_Form() class.

#Handle table number from spin box
self.table_no = 0
#Stores current table robot position
self.current_table_position = 0
#Creating Actionlib client
self.client = actionlib.SimpleActionClient('move_base',MoveBaseAction)
#Creating goal message definition
self.goal = MoveBaseGoal()
#Start this function for updating battery and robot status
self.update_values()

The following code shows the signals and slots assignment in this code for buttons
and spin box widgets:

#Handle spinbox signal and assign to slot set_table_number()
QtCore.QObject.connect(self.spinBox, QtCore.SIGNAL(_
fromUtf8("valueChanged(int)")), self.set_table_number)

Chapter 11

[271]

#Handle Home button signal and assign to slot Home()
QtCore.QObject.connect(self.pushButton_3, QtCore.SIGNAL(_
fromUtf8("clicked()")), self.Home)

#Handle Go button signal and assign to slot Go()
QtCore.QObject.connect(self.pushButton, QtCore.SIGNAL(_
fromUtf8("clicked()")), self.Go)

#Handle Cancel button signal and assign to slot Cancel()
QtCore.QObject.connect(self.pushButton_2, QtCore.SIGNAL(_
fromUtf8("clicked()")), self.Cancel)

The following slot handles the spin box value from the UI and assigns a table
number. Also, it converts the table number to the corresponding robot position:

def set_table_number(self):
 self.table_no = self.spinBox.value()
 self.current_table_position = table_position[self.table_no]

Here is the definition of the Go slot for the Go button. This function will insert into
the robot position of the selected table in a goal message header and send it to the
navigation stack:

def Go(self):

 #Assigning x,y,z pose and orientation to target_pose message
 self.goal.target_pose.pose.position.x=float(self.current_table _
position[0])

 self.goal.target_pose.pose.position.y=float(self.current_table _
position[1])
 self.goal.target_pose.pose.position.z=float(self.current_table _
position[2])

 self.goal.target_pose.pose.orientation.x = float(self.current_
table_position[3])
 self.goal.target_pose.pose.orientation.y= float(self.current_
table_position[4])
 self.goal.target_pose.pose.orientation.z= float(self.current_
table_position[5])

 #Frame id
 self.goal.target_pose.header.frame_id= 'map'

Designing a GUI for a Robot Using Qt and Python

[272]

 #Time stamp
 self.goal.target_pose.header.stamp = rospy.Time.now()

 #Sending goal to navigation stack
 self.client.send_goal(self.goal)

The following code is the Cancel() slot definition. This will cancel all the robot
paths that it was planning to perform at that time.

def Cancel(self):
 self.client.cancel_all_goals()

The following code is the definition of Home(). This will set the table position
to zero, and call the Go() function. The table at position zero is the home position
of the robot:

def Home(self):
 self.current_table_position = table_position[0]
 self.Go()

The following definitions are for the update_values() and add() functions.
The update_values() method will start updating the battery level and robot status
in a thread. The add() function will retrieve the ROS parameters of the battery status
and robot status, and set them to the progress bar and label, respectively:

def update_values(self):
 self.thread = WorkThread()
 QtCore.QObject.connect(self.thread, QtCore.
SIGNAL("update(QString)"), self.add)
 self.thread.start()
def add(self,text):
 battery_value = rospy.get_param("battery_value")
 robot_status = rospy.get_param("robot_status")
 self.progressBar.setProperty("value", battery_value)
 self.label_4.setText(_fromUtf8(robot_status))

The WorkThread() class used in the preceding function is given here. The
WorkThread() class is inherited from QThread provided by Qt for threading. The
thread simply emits the signal update(Qstring) with a particular delay. In the
preceding function update_values(), the update(QString) signal is connected to
the self.add() slot; so when a signal update(QString) is emitted from thread, it
will call the add() slot and update the battery and status value:

class WorkThread(QtCore.QThread):
 def __init__(self):

Chapter 11

[273]

 QtCore.QThread.__init__(self)
 def __del__(self):
 self.wait()
 def run(self):
 while True:
 time.sleep(0.3) # artificial time delay
 self.emit(QtCore.SIGNAL('update(QString)'), " ")
 return

We have discussed how to make a GUI for ChefBot, but this GUI is only for the user
who controls ChefBot. If someone wants to debug and inspect the robot data, we
may have to go for other tools. ROS provides an excellent debugging tool to visualize
data from the robot.

The rqt tool is one of the most popular ROS tools, which is based on a Qt-based
framework for GUI development for ROS. Let's discuss the rqt tool, installation
procedure, and how we can inspect the sensor data from the robot.

Installing and working with rqt in
Ubuntu 14.04.2 LTS
rqt is a software framework in ROS, which implements various GUI tools in the form
of plugins. We can add plugins as dockable windows in rqt.

Installing rqt in Ubuntu 14.04.2 can be done using the following command. Before
installing, ensure that you have the full installation of ROS Indigo.

$ sudo apt-get install ros-indigo-rqt

After installing the rqt packages, we can access the GUI implementation of rqt called
rqt_gui, in which we can dock rqt plugins in a single window.

Let's start using rqt_gui.

Run the roscore command before running rqt_gui:

$ roscore

Run the following command to start rqt_gui:

$ rosrun rqt_gui rqt_gui

Designing a GUI for a Robot Using Qt and Python

[274]

We will get the following window if the commands work fine:

We can load and unload plugins at run time. To analyze the ROS message log, we
can load the Console plugin from Plugins | Logging | Console. In the following
example, we load the Console plugin and run a talker node inside rospy_
tutorials, which will send a Hello World message to a Topic called /chatter.

Run the following command to start the node talker.py:

$rosrun rospy_tutorials talker.py

In the following screenshot, rqt_gui is loaded with two plugins named Console
and Topic Monitor. The Topic Monitor plugin can be loaded from Plugins | Topics
| Topic Monitor. The Console plugin monitors the messages printing on each nodes
and their severity. It is very useful for debugging purposes. In the following figure,
the left section of rqt_gui is loaded with the Console plugin and the right side is
loaded with Topic Monitor. Topic Monitor will list the topics available and will
monitor their values.

Chapter 11

[275]

In the following figure, the Console plugin monitors the talker.py node's messages
and their severity level whereas Topic Monitor monitors the value inside the
/chatter Topic.

We can also visualize data such as images and plot graphs on rqt_gui. For robot
navigation and its inspection, there are plugins for embedding RViz in rqt_gui.
The Navigation viewer plugin views the from /map Topic. The visualization
plugins are available in Plugin | Visualization.

Questions
1.	 What are the popular UI toolkits available on the Linux platform?
2.	 What are the differences between PyQt and PySide Qt bindings?
3.	 How do you convert a Qt UI file into Python script?
4.	 What are Qt signals and slots?
5.	 What is rqt and what are its main applications?

Designing a GUI for a Robot Using Qt and Python

[276]

Summary
In this chapter, we discussed creating a GUI for ChefBot that can be used by an
ordinary user who doesn't have any idea about the internal working of a robot.
We used Python binding of Qt called PyQt to create this GUI. Before we go to the
main GUI design, we saw a Hello World application to get an easier understanding
of PyQt. The UI design was done using the Qt Designer tool and the UI file was
converted into its equivalent Python script using Python UI compiler. After
designing the main GUI in Qt Designer, we converted the UI file into Python script
and inserted the necessary slots in the generated script. The ChefBot GUI can start
the robot, select a table number, and command the robot to get into that position.
The position of each table is acquired from the generated map we hardcoded the
positions in this Python script for testing. When a table is selected, we set a goal
position on the map, and when we click on the Go button, the robot will move into
the goal position. The user can cancel the operation at any time and command the
robot to come to the home position. The GUI can also receive the real-time status
of the robot and its battery status. After discussing the robot GUI, we saw the
debugging GUI tool in ROS called rqt. We saw some plugins used for debugging
the data from the robot. In the next chapter, we will see the complete testing and
calibration of the robot.

[277]

The Calibration and Testing
of ChefBot

In this chapter, we will discuss the calibration and testing of ChefBot that is
necessary before deploying the robot in the work place. The testing can be done
using the GUI that we built in the previous chapter. Before the test run, we can
calibrate the sensors and address the issues in the ChefBot hardware and software.
In the testing procedure, we can build a map of a hotel kind of arrangement and
navigate on the map using ROS on ChefBot. We can also see ways to improve
accuracy and upgrade the ChefBot prototype in future.

First, we will look at the calibration of sensors such as Kinect, Quadrature encoder,
and IMU to improve the accuracy of the robot.

The Calibration of Xbox Kinect
using ROS
Kinect calibration is required to improve the accuracy of the Kinect data. In this
robot, Kinect is used instead of a laser scanner. We can generate data equivalent to
that provided by laser scanner by converting Point Cloud data, using a depth image
to laser scanner converter package in ROS. This converted data may not be as precise
as an actual laser scanner, so in effect, the error from the converted laser scanner
can affect robot mapping, navigation, and localization. To reduce the errors to some
extent, we can do a calibration prior to our application. Kinect can even work on
factory settings without being calibrated, each device has its own camera parameters
and these can change from device to device. Some of the camera parameters are focal
length, format size principle point, and lens distortion. When we perform camera
calibration, we are able to adjust these values.

The Calibration and Testing of ChefBot

[278]

One of the calibrations used in Kinect is intrinsic calibration. Some of the intrinsic
parameters are focal length and distortion model. Using intrinsic calibration, we can
correct these values of IR (depth) and RGB camera intrinsic parameters.

Let's see how to perform Kinect intrinsic calibration using ROS and Python.

Calibrating the Kinect RGB camera
Before calibrating Kinect using ROS, ensure that the OpenNI driver packages
and camera calibration packages of ROS are installed. If they are not installed,
we can install them using the following command:

$ sudo apt-get install ros-indigo-openni-launch ros-indigo-camera-
calibration

Before the calibration, print an 8 x 6 checkerboard of 0.108 meter in length.
We will get a standard 8 x 6 checkerboard file from the following link:

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

Follow the procedure to calibrate the RGB camera in Kinect:

1.	 Start the OpenNI driver using the following command. This will start Kinect
RGB and depth stream images:
$ roslaunch openni_launch openni.launch

2.	 After launching drivers, run the calibrator code available on the
camera_calibration package. The cameracalibrator.py file is the node
that performs camera calibration. We have to specify the RGB raw image
topic, camera topic, size of the checkerboard and size of the square that we
are using. Simply run the calibrator node by using following command:
$ rosrun camera_calibration cameracalibrator.py image:=/camera/
rgb/image_raw camera:=/camera/rgb --size 8x6 --square 0.108

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

Chapter 12

[279]

3.	 The above command will open the following window:

4.	 Assuming that you have a printed checkerboard and you hold it in your
hand and show it on the Kinect RGB camera, you can see patterns getting
detected, as in the preceeding figure. If it is detected properly, then move
the checkerboard to the left, right, top, and bottom of the camera view, as
shown in the following figure. There are four bars on the right; the X and Y
bar indicate the amount of data collected in the x and y direction and the Size
and Skew bars indicate the samples of images, that are, towards/away from
the camera and tilted up/down respectively.

The Calibration and Testing of ChefBot

[280]

5.	 At each step, hold the checkerboard still until the image gets highlighted by
the detection pattern in the calibration window. The necessary checkerboard
position is shown as follows:

6.	 When we move the checkerboard around the RGB camera, the size of the
bars increase and when the calibration program gets enough samples for
calibration, the CALIBRATE button will become active.

Chapter 12

[281]

7.	 We click on the CALIBRATE button to start calibration. The calibration
process can take about a minute. The calibration window may be
non-responsive for some time, but it will be ready eventually.

After the calibration process is complete, we can see the calibration results in the
terminal and the corrected image will be shown in the calibration window.

A successful calibration will result in a rectified image and a failed calibration
usually results in a blank or unrecognizable image.

The Calibration and Testing of ChefBot

[282]

After calibration, we can use the slider on the top of the calibration window to adjust
the size of the rectified image. The scale value will show as zero the rectified image,
and some pixels in the original image will be discarded. A scale of 1.0 means we can
see the original image and the rectified image has black borders where there are no
input pixels in the original image.

If you are satisfied with the calibration, click on the COMMIT button to send the
calibration parameters to the camera for permanent storage. The GUI exits and you
should see writing calibration data to ... in the console.

Calibrating the Kinect IR camera
Kinect can detect the depth of the environment using an IR camera and an IR speckle
projector, which can perform the same function as a stereo camera. We can calibrate
the depth image that we got from Kinect using the checkerboard that we used for the
RGB camera calibration.

The difficulty in calibrating a depth image is that the speckle pattern on the depth
image can block the accurate detection of the corners of the checkerboard. One
possible solution is to cover the IR projector and illuminate it with another IR
source such as sunlight, incandescent lamp, and so on. The first figure shows the
checkerboard with the speckle pattern and the second figure shows the depth image
illuminated by an incandescent lamp and covering the speckle IR projector.

Chapter 12

[283]

The Python script used for the RGB camera can be used for depth calibration.
The following command is used to calibrate the IR camera. Run the calibrator node
using the depth image topic; we are using the 8 x 6 checkerboard with a size of 0.108
meter, as shown in the following example:

$ rosrun camera_calibration cameracalibrator.py image:=/camera/ir/image_
raw camera:=/camera/ir --size 8x6 --square 0.108

The ROS driver for Kinect cannot stream both IR and RGB images. It will decide which
of the two to stream, based on the amount of subscribers. It is best to not run any ROS
nodes during the calibration of the depth image, which subscribe RGB frames.

Repeat the same movements of the RGB camera calibration in depth camera too.
After calibration, we can press the COMMIT button to save the calibration values to
a file. When we press the COMMIT button, the values will be sent to the openni_
camera driver package in a form of ROS service call. When openni_camera receives
the camera parameters, it will store them to a file with the help of an ROS package
called camera_info_manager. The camera_info_manager package can handle
these parameters and store them in some location. The default location of intrinsic
parameters is $HOME/.ros/camera_info/NAME.yaml and the name of file contains
the camera name and device serial number. This file can be moved to any public
location we want. The name of the files of RGB and depth calibration will look like
rgb_A00362903124106A.yaml and depth_A00362903124106A.yaml.

The content of the RGB camera calibration file is given as follows:

image_width: 640
image_height: 480
camera_name: rgb_A00362903124106A
camera_matrix:
 rows: 3
 cols: 3
 data: [543.275251827696, 0, 286.5024846235134, 0,
544.9622371717294, 270.5536535568697, 0, 0, 1]
distortion_model: plumb_bob
distortion_coefficients:
 rows: 1
 cols: 5
 data: [0.1236660642773772, -0.2974236496563437,
0.008147821573873778, -0.03185623828978901, 0]
rectification_matrix:

The Calibration and Testing of ChefBot

[284]

 rows: 3
 cols: 3
 data: [1, 0, 0, 0, 1, 0, 0, 0, 1]
projection_matrix:
 rows: 3
 cols: 4
 data: [531.7443237304688, 0, 263.0477918357592, 0, 0,
559.802490234375, 274.1133349321171, 0, 0, 0, 1, 0]

If the files are placed in the default location, the OpenNI driver can automatically
take the calibration files from this location. If we want to save them in some other
location, we have to use the launch file section given in the following code and
mention the path of the camera calibration files as arguments of openni.launch:

<launch>
<!-- Include official launch file and specify camera_info urls -->
 <include file="$(find openni_launch)/launch/openni.launch">
 <!-- provide arguments to that launch file -->
 <arg name="rgb_camera_info_url"
 value="file:///public/path/rgb_ A00362903124106A.yaml" />
 <arg name="depth_camera_info_url"
 value="file:///public/path/depth_ A00362903124106A.yaml" />
 </include>
</launch>

Wheel odometry calibration
Calibration is required in odometry to reduce navigational errors. The main
parameter needed to calibrate this is the measure of Distance per encoder ticks
of the wheels. It is the distance traversed by the robot wheel after during each
encoder tick.

The wheel base is the distance between the two differential drive wheels. Distance
per encoder ticks is the distance traversed by the wheel on each encoder count. We
can calibrate the robot by monitoring encoder counts of each wheel by driving for a
fixed distance. The average of these counts is divided by the total distance traveled to
get a starting value for the encoder click, which happens per millimeter. The encoder
manufacturer may mention an encoder count in one revolution, but in a practical
scenario, there will be changes in it.

To calibrate the robot, drive the robot for a fixed distance and note down the encoder
counts in the left and right motor. The following equation can give an average count
per millimeter:

Counts per millimeter = (left counts + right counts)/2)/ total millimeter traveled

Chapter 12

[285]

Error analysis of wheel odometry
An error from the wheel odometry can result in accumulation of errors in the
position of the robot. The odometry value can change when the wheel slips on the
ground or moves on an uneven terrain. The odometry error generated while the
robot rotates can cause severe errors in the robot's final position. For example, in a 10
meter trip of robot, if both wheels slip by 1 centimeter, it can cause 0.1 percent errors
in the total distance and the robot will arrive 1 cm short of its destination.

However, if the slip between two wheels is 1 centimeter, it can cause more
errors than the first case that we discussed. This can result in a large error in
both X and Y coordinates.

Assume that the robot wheel base is 10 centimeter and a slip of 1 centimeter between
two wheels can result in 0.1 radian error, which is about 5.72 degrees. Given here is
the equation to find the heading error:

heading error = (left - right) / Wheel base

= (0.01 / 0.1)

 = 0.1 radians * (180 / PI) = ~ 5.72 degrees

We can find the final position of the robot after 10 meters with a heading error of 0.1
radian, as shown here:

X' = 10 * sin (5.72) = ~ 1 meter

Y' = 10 * cos(5.72) = 9.9 meter

From these calculations, we know that a heading error of 0.1 radian causes a shift of
1 meter in the x direction from the destination position. The illustration of this error
is given as follows:

The Calibration and Testing of ChefBot

[286]

From this analysis, we understood that a small error in θ produces large errors in
X and Y. The main error affects the orientation of the robot rather than the distance
traveled. There are some methods to reduce this error. These are mentioned in the
following section.

Error correction
From the above analysis, it can be seen that the most important error in the robot's
position calculation is the error in heading, the θ calculation. Some of the methods to
reduce θ errors are as follows:

•	 Digital compass: We can deploy a digital compass in the robot to get the
heading of the robot and thereby reduce the robot heading error. Digital
compass can be used alone but it may encounter problems such as if there
is any local magnetic anomaly, it can make a big noise in the reading. Also,
the compass must be perfectly inclined to the robot's surface; if the surface is
uneven, there will be errors in the compass readings.

•	 Digital gyroscope: The digital gyroscope provides the rate of change of
the angle or angular velocity. If we know the angular velocity, we can find
the angle by integrating the values over a period of time. We can find the
angular velocity of the robot using gyro; but the gyro value can make errors
too. If a robot has to cover a great distance, the error computing from gyro
will increase, so gyro can only be used if the robot covers a short distance.
If the robot covers a great distance, we can use the combination of a
gyroscope and a compass.

•	 Gyro-corrected compass: In this method, we incorporate the gyro
and compass in to a single unit, so that one sensor can correct the other.
Combining these sensor values using a Kalman filter can give better
heading values for the robot.

In the ChefBot prototype, we are using Gyro alone. In future upgrades, we will
replace gyro with the combination of gyro and compass.

We are using an IMU called MPU-6050 by Invense to get the heading of the robot.
The following section explains a simple calibration method to reduce the offset of
MPU 6050. Here are the procedures to calibrate the sensor.

Chapter 12

[287]

Calibrating the MPU 6050
MPU 6050 calibration can be done using the Energia code, which is used to display
the raw values of the sensor mentioned in Chapter 6, Working with Robotic Sensors.
This example is already available in Energia examples. You will get this code by
navigating to File/Examples/MPU 6050/Examples/MPU 6050_raw. Load this
sketch into Energia and follow the procedure given here:

1.	 Place the MPU 6050 breakout board on a flat surface. We can use an
inclinometer to check the inclination of the surface.

2.	 Modify the current program by setting the offset to zero. We can set the
offset of three axes values of gyroscope to 0 using the following function:
("setXGyroOffset , setYGyroOffset , setZGyroOffset" =0)

3.	 Upload the raw code to Launchpad and take the Energia serial monitor to
confirm whether the serial data is coming from the Launchpad. Leave the
breakout for 5 to 10 minutes to allow the temperature to stabilize and read
the gyro values and note down the values.

4.	 Set the offset values to the readings noted and upload the code again to
the Launchpad.

5.	 Repeat this procedure until we get a reading of 0 from each gyro axis.
6.	 After achieving the goal, we finally get the offsets that can be used for

future purposes.

These are the necessary procedures to calibrate MPU6050. After sensor calibration,
we can test the robot hardware using the GUI.

Testing of the robot using GUI
We have already discussed how to build a map of the environment using the robot
simulation and robot hardware. In this section, we discuss how to command the
robot to go into a particular place of the map. A better way to find the position of the
robot in each table is to manually drive the robot using teleoperation.

Assuming that ChefBot packages are configured in both the robot's PC and the
user's PC, there should be Wi-Fi networks to which both the robot and user PCs can
connect and communicate using the IP assigned to each PC. It should be noted that
we have to set ROS_MASTER_URI and ROS_IP, as mentioned in Chapter 10, Integration
of ChefBot Hardware and Interfacing it into ROS, Using Python.

The Calibration and Testing of ChefBot

[288]

The following procedure can be used to test the robots that are working in a hotel
environment:

1.	 Remote login to the robot PC from the user PC using the ssh command.
The command is given as follows:
$ ssh <robot_pc_ip_address>

2.	 If the room is not mapped yet, we can map it using the following commands
in the robot terminal. Start the robot sensors and the odometry handling
nodes using the following command:
$ roslaunch chefbot_bringup robot_standalone.launch

3.	 After starting the nodes, we can start the gmapping nodes using the
following command:
$ roslaunch chefbot_bringup gmapping_demo.launch

4.	 After starting gmapping, we can start the keyboard teleoperation nodes to
move the robot using the keyboard:
$ roslaunch chefbot_bringup keyboard_telop.launch

5.	 After launching the teleoperation, run RViz in the user system to view the
map generated:
$ roslaunch chefbot_bringup view_navigation.launch

Chapter 12

[289]

6.	 A typical map is given in the preceding figure. It can vary according to
the environment. After generating the map, we have to run the following
command to save the generated map in the home folder:
$ rosrun map_server map_saver -f ~/<name_of_the_map>

7.	 After saving the map, we can start the AMCL node for autonomous
navigation:
$ roslaunch chefbot_bringup amcl_demo.launch map_file:=~/<map_
name.yaml>

8.	 The robot on the map after starting AMCL is shown in the figure. After
running AMCL, start the keyboard teleoperation and move to each table
referring the map.

9.	 Check whether the robot's position is the same in map and in the actual
environment. If there is a huge difference, then we need to remap the room.
If there is less difference, we can retrieve and view robot's position near each
table with respect to the map, using the following command:

$rosrun tf tf_echo /map /base_link

The Calibration and Testing of ChefBot

[290]

We will get the translation and rotation value of the robot in each position, as shown
in the following screenshot:

Note the corresponding position of the robot near each table and feed it to the GUI
code. The editing GUI code must be on the user PC. After inserting the position
of the robot in each table on the GUI code, run the GUI node using the following
command on the user system:

$ rosrun chefbot_bringup robot_gui.py

The following GUI will pop up and we can control the robot using this GUI.

Chapter 12

[291]

We can command the robot to go into a particular table by giving the table
number on the GUI and pressing the Go button. When we press the Go button,
the corresponding goal position is sent to the navigation stack. After testing the
GUI, we can deploy the robot on the current environment.

We can see the advantages and disadvantages of this navigation method.
The navigation method mainly depends on the ROS framework and
programming using Python.

Pros and cons of the ROS navigation
The main highlight of the ROS navigation is that the code is open and reusable.
Also, it is simple to understand, even if the handling technology is complex. People
with minimal computer knowledge can program an autonomous robot.

The cons of this method are: this is not yet stable and is still in the testing stage,
we can't expect high accuracy from this method, and the code may not be of
industrial standards.

Questions
1.	 What is the main use of the intrinsic calibration of Kinect?
2.	 How we can calibrate MPU 6050 values?
3.	 How we can calibrate the wheel odometry parameters?
4.	 What are the possible errors in wheel odometry?
5.	 What are the pros and cons of this robot design?

Summary
In this chapter, we have discussed all the possible errors and calibrations required
before starting the robot. The calibration is required to reduce errors from the
sensors. We also saw all the steps to do before working with robot GUI that we
have designed. We also have seen the pros and cons of this method. The area we
are handling is still being researched so we can't expect high accuracy from the
current prototype.

[293]

Index
Symbols
2D CAD drawing, of robot

base plate design 27, 28
base plate pole design 28
caster wheel design 30
creating, LibreCAD used 24, 25
middle plate design 31
top plate design 32
wheel, motor, and motor

clamp design 29, 30
3D model of robot, with Blender

about 32, 33
Python scripting 33

A
Absolute Zero, LibreCAD 26
acoustic model 189
Active State Python 2.7 bit

URL, for downloading 203
Adaptive Monte Carlo Localization (AMCL)

URL 75
Advance Packaging Tool (APT) 258
AI (Artificial Intelligence) 209
AIML

about 209-211
working with 215, 216

aiml_client.py file 223

aiml_server.py file 221
aiml_speech_recog_client.py file 224, 225
AIML tags

<aiml> tag 211
<category> tag 211
<pattern> tag 212
<srai> tag 213
about 211
reference link 214

aiml_tts_client.py file 223
A.L.I.C.E. AIML files

loading 219, 220
loading, Bootstrap method used 220
loading, into memory 218, 219
reference link 218
saving, in brain file 219, 220
working with 218

AMCL package
URL 255

Arduino
URL 101

Artificial Intelligence Markup
Language. See AIML

A* search algorithm 11
AutoCAD

URL 21
autonomous system 5

[294]

B
bags 57
baudRate variable 134
BeagleBone

URL 106
binaries, for Windows and Mac OS X

URL 259
Blender

about 22
installing 23
URL 21
URL, for documentation 23
URL, for downloading 23
URL, for Python scripting 34
URL, for tutorials 33

Blender Python APIs 34
block diagram, robot

about 94
Central Processing Unit 106, 107
embedded controller board 101
encoder 95
Inertial Measurement Unit (IMU) 104
Kinect 105, 106
motor 95
motor driver 97, 98
power supply/battery 108
speakers/mic 108
ultrasonic sensors 102

block diagram, speech recognition system
about 188
acoustic model 189
feature extraction 189
language model 189
lexicon 189
recognized words 189
search algorithm 189

Bootstrap method
used, for loading A.L.I.C.E. AIML files 220
used, for loading brain files 220

bpy module
about 34
Context Access 34

Data Access 34
Operators 34

brain file
A.L.I.C.E. AIML files, saving in 219, 220
loading, Bootstrap method used 220

breakout board
URL, for purchasing 105

Bullet
URL 66

C
CAD tools

AutoCAD 22
Blender 22
Google SketchUp 22
Inventor 22
LibreCAD 22
Maya 22
SolidWorks 22

calibration
URL 278

Carmine
about 167
URL, for purchasing 167

caster wheels
reference link 30

catkin
defining 61
URL 61

Central Processing Unit 106
ChefBot

ROS Python driver, writing for 239-245
ChefBot description ROS package

chefbot_base_gazebo.urdf.xacro 80-82
chefbot_base.urdf.xacro 83, 84
creating 77-80
kinect.urdf.xacro 83

ChefBot hardware
building 230-234
specifications 94
working 110, 111

[295]

ChefBot PC
configuring 235

ChefBot Python nodes
working with 246-252

ChefBot ROS launch files
defining 245, 246

ChefBot ROS package
setting 235
URL 267

ChefBot sensors
interfacing, to Tiva C LaunchPad 236, 237

ChefBot simulation, in hotel
environment 86-90

CloudSim framework
URL 67

CMakeList.txt and package.xml file 77
cmudict 189
CMU Sphinx

about 189
URL 190

code
interfacing 121-123

code, of Tiva C LaunchPad
interfacing 140-142

command-line argument
single AIML file, loading from 216, 217

communication system, ChefBot
block diagram 210

components, robot
about 11
controllers 13
effectors 12, 13
physical body 12
sensors 12

Computer-aided design (CAD)
tools. See CAD tools

control GUI, ChefBot
features 268
working with 267-272

counts per revolution (CPR) 125
CUDA, for GPU acceleration

URL 168

cv_bridge
used, for displaying Kinetic images 177-180

D
DART

URL 66
DC geared motor

interfacing, to Tiva C LaunchPad 114-116
dead reckoning 149
degrees of freedom (DOF) 47
differential drive mechanism

code, interfacing 121-123
differential wheeled robot 116, 117
Energia IDE, installing 118-121

differential drive robot 18
differential wheeled robot 116, 117
Digital Motion Processor (DMP) 237
Direct Current (DC) 94
Drive system 113
Dynamixel 133
Dynamixel actuators

working with 132-135
Dynamixel servos

URL 132

E
effectors, robot

locomotion 13
manipulation 13

embedded code, for ChefBot 237-239
encoder

about 95
selecting, for robot 96, 97

encoder data
processing 125-128

Energia
about 117
downloading 118
URL 101, 117

Energia IDE
installing 118-121

[296]

eSpeak
about 191
setting up, in Ubuntu 14.04.2 201
URL 191

Extensible Markup Language (XML) 211

F
feature extraction 189
features, Gazebo

advanced 3D Graphics 67
Cloud Simulation 67
command-line tools 67
dynamic simulation 66
plugins 67
sensors support 67
TCP/IP Transport 67

Festival
about 191
setting, in Ubuntu 14.04.2 201
URL 191

files
launching 246-252

forward kinematics equation 48-53

G
Gazebo

about 45
defining 66
features 66
installing 67
testing, with ROS interface 68, 69
URL 45
using 43

Gazebo model
creating, from TurtleBot packages 74-76

Gazebo simulator
URL 67

General-Purpose Input/Output (GPIO) 101
gmapping package

URL 185
Google SketchUp

URL 21
gray codes

URL 127
GTK+

about 69
URL 257

GUI
used, for testing robot 287-291

H
H-bridge 97
HC-SR04

about 103
interfacing, to Tiva C LaunchPad 138
working 139

Hello World GUI application
creating 262
running 266

Hello_world_publisher.py 63, 64
Hello_world_subscriber.py 64-66
hierarchical (deliberative) control 14, 15
HMM (Hidden Markov Models) 189
hybrid control 15

I
image

capturing, from web camera 171, 172
displaying, with Python-OpenCV

interface 170
image processing libraries 163-167
IMU

about 81, 104
code of Energia, interfacing 152-160
inertial navigation system 147, 148
MPU 6050, interfacing with Tiva C

LaunchPad 149, 150
URL 81
working with 147

in-built encoder 125
Inertial Measurement Unit. See IMU

[297]

Inertial Navigation System (INS) 148
input pins, motor driver 100
Instantaneous Center of Curvature (ICC) 49
Interrupt Service Routine (ISR) 130
Inverse Kinematics 53, 54
IR proximity sensor

working with 144-147
Itseez

URL 168

J
Julius

about 190
speech recognition accuracy,

improving in 201
URL 190

Julius speech recognizer
installing 198, 199

K
Kalman filter

URL 148
kinect

about 105, 165, 166
programming, with Python 175
URL, for purchasing 106

Kinect images
displaying, cv_bridge used 177-180
displaying, Python used 177-180
displaying, ROS used 177-180

Kinect IR camera
calibrating 282-284

Kinect RGB camera
calibrating 278-281

kinematics equations
URL 54

L
language model 189
laser scan data

Point Cloud, converting to 183

laws, robotics
first law 9
second law 9
third law 9
zeroth law 9

Layer List, LibreCAD
reference link 25

level convertor
URL 114

level shifter
about 111
URL 236

lexicon 189
LibreCAD

about 22
installing 23
references, for installing 22
URL 21
URL, for documentation 23

LibreCAD tools
Absolute Zero 26
Block 26
Command Box 25
Layer List 25
reference link 25

lines per revolution (LPR) 125
LM (Language Model) 193
loop() function 130

M
Mac OS X

URL 121
mathematical modeling, of robot

about 46
forward kinematics equation 48-53
Inverse Kinematics 53, 54
robot kinematics 47, 48
steering system 47, 48

Maya
URL 21

memory
A.L.I.C.E. AIML files, loading into 218, 219

[298]

MeshLab
about 22
installing 23
URL 84
URL, for source code 23

methods, for reducing errors
digital compass 286
digital gyroscope 286
gyro-corrected compass 286

motor
about 95
selecting, for robot 96, 97

motor driver
about 97, 98
input pins 100
output pins 100
power supply pins 100
reference link 99
selecting 99

motor rotation feedback
reference link 95

motors, robot drive mechanism
motor torque, calculating 20
RPM of motors, calculating 19
selecting 19

mounting hub
reference link 97

MPU 6050
about 149
calibrating 287
interfacing, with Tiva C

LaunchPad 149, 150
MPU 6050 library

setting up, in Energia 150, 151

N
Natural interaction (NI) 173
nServos variable 134
NUC

about 106
URL, for purchasing 107

NumPy
about 170
URL 170

NXP
URL 164

O
odometry values 52
OGRE framework

URL 67
OpenCV

about 46, 168
applications 169
installing 169
URL 169

OpenCV, in Mac OS X
URL 169

OpenCV, in Windows
URL 169

OpenCV-Python tutorials
URL 172

OpenCV support
ROS package, creating with 176, 177

Open Dynamics Engine (ODE)
URL 66

OpenNI
about 173
installing, in Ubuntu 14.04.2 174

OpenNI driver
launching 175

OpenSlam
URL 185

output pins, motor driver 100

P
PCL

about 174
URL, for downloading 174

PCM (Pulse Code Modulation) 188
Personal Computer (PC) 21

[299]

physical world 5
pins, motor drivers 115
pitch 47
Pocket Sphinx

about 189
setting up, in Ubuntu 14.04.2 192
speech recognition accuracy,

improving in 201
pocketsphinx package

installing, in ROS Indigo 204
Pocket Sphinx Python binding,

Ubuntu 14.04.2 193
Point Cloud

converting, to laser scan data 183, 184
generation 181, 182
working with 181

Pololu
URL 96, 97

Pololu H-Bridge
using 114

portName variable 134
power supply pins, motor driver 100
Printed Circuit Board (PCB) 233
pulses per revolution (PPR) 125
PyAIML

about 209, 214
installing, from source code 215
installing, in Ubuntu 14.04.2 215

PyAIML, integrating into ROS
about 221
aiml_client.py file 223
aiml_server.py file 221
aiml_speech_recog_client.py file 224, 225
aiml_tts_client.py file 223
start_chat.launch file 225
start_speech_chat.launch file 226, 227
start_tts_chat.launch file 226

pydynamixel
about 133
URL 133

pyjulius
URL, for downloading 199

PyQt
about 258
installing, on Ubuntu 14.04.1 LTS 259
URL 259
working with 259

PyQt code
slot definition, adding to 264-266

PySerial module
about 142
URL 142

PySide
about 259
installing, on Ubuntu 14.04.2 LTS 259
URL 259
working with 259

Python
Kinetic, programming with 175
Tiva C LaunchPad, interfacing

with 142, 143
used, for displaying Kinetic images 177-180
working with 215, 216

Python APIs, Blender 34
Python binding

setting, in Ubuntu 14.04.2 192
Python bindings, of Qt

PyQt 258
PySide 259
working with 258

Python code
UI file, converting into 263, 264

Python-Julius client code, speech
recognition 199, 200

Python module
installing 198, 199

Python-OpenCV interface
image, displaying with 170
image, reading with 170

Python script, robot model 36-41
Python wrapper, for Windows Speech SDK

URL, for downloading 203

[300]

Q
Qt

about 258
installing, on Ubuntu 14.04.2 LTS 258
signals 261-263
slots 261-263
URL 257, 258

Qt Designer
defining 260, 261

quadrature encoder
interfacing, with Tiva C

LaunchPad 124, 125
quadrature encoder interfacing

code 128-131

R
Raspberry Pi

URL 106
reactive control 14
real-time speech recognition,

GStreamer 195-197
real-time speech recognition,

Pocket Sphinx 195-197
real-time speech recognition,

Python 195-197
recognition grammar, Julius

reference link 201
recognized words 189
RoboLogix 46
robot

about 2, 8, 11
building 14
defining 4-7
hierarchical (deliberative) control 14, 15
history 2-11
hybrid control 15
reactive control 14
testing, GUI used 287-291

Robot chassis design 21

robot drive mechanism
about 18
design summary 20
motors, selecting 19
wheels, selecting 19

robot dynamics 47
robotics

about 8
defining 1

robotic simulation
about 43-45
advantages 45
ChefBot simulation, in hotel

environment 86-90
disadvantages 45
Gazebo 54, 55
mathematical modeling, of robot 46
ROS 54, 55
ROS Indigo, installing on

Ubuntu 14.04.1 58-60
robotic simulator applications

Gazebo 45
RoboLogix 46
V-REP 46
webots 46

robotic vision sensors 163-167
robot kinematics 47, 48
robot model 76, 77
Robot Operating System. See ROS
ROS

about 54
defining 54
features 55
ROS community 55
ROS Computation Graph 55
ROS filesystem 55
URL 54
used, for calibrating Xbox Kinect 277
used, for displaying Kinetic images 177-180

[301]

ROS community level
about 57
Distributions 57
Mailing Lists 58
Repositories 58
ROS Wiki 58

ROS Computation Graph
about 56
bags 57
messages 56
nodes 56
Parameter server 56
ROS Master 56
services 56
topics 56

ROS filesystem
about 55
message (msg) types 56
Package Manifests 55
packages 55
service (srv) types 56

ROS Indigo
catkin, defining 61
ChefBot description ROS package,

creating 77-80
Gazebo, defining 66
Gazebo, installing 67
Gazebo model, creating from TurtleBot

packages 74-76
Gazebo, testing with ROS interface 68, 69
Hello_world_publisher.py 63, 64
Hello_world_subscriber.py 64-66
installing, on Ubuntu 14.04.1 58-60
pocketsphinx package, installing in 204
robot model 76, 77
robot state publisher 76, 77
ROS package, creating 61
TurtleBot Robot packages,

installing 69-72

TurtleBot Robot packages, installing in
Ubuntu 72

TurtleBot, simulating 72, 73
URDF 76, 77
xacro 76, 77

ROS interface, of OpenCV 176
ROS localization

working with 254, 255
ROS navigation

cons 291
pros 291
working with 254, 255

ROS package
creating 61
creating, with OpenCV support 176, 177
URL 59, 74

ROS-PCL package
URL, for downloading 175

ROS Python driver
writing, for ChefBot 239-245

rqt
about 273
defining, in Ubuntu 14.04.2 LTS 273, 274
installing, in Ubuntu 14.04.2 LTS 273, 274

rviz
about 88
URL 88

S
SAPI (Speech Application Programming

Interface) 202
search algorithm 189
Serial Clock Line (SCL) 105
Serial Data Line (SDA) 105
serial module 143
Service Robot

requisites 18
setup tools, Python

URL, for downloading 198

[302]

signals 261, 262
Simbody

URL 66
single AIML file

loading, from command-line
argument 216, 217

SLAM
about 75, 163
working with 184

SLAM, on ROS
working with 252, 253

slot 261
slot definition

adding, to PyQt code 264-266
SolidWorks

URL 21
source code

PyAIML, installing in 215
spam filters 5
specifications, ChefBot hardware 94
speech recognition

about 188
decoding, from wave file 193

speech recognition accuracy
improving, in Julius 201
improving, in Pocket Sphinx 201

speech recognition, in Ubuntu 14.04.2
about 192
output 194

speech recognition, Julius 198
speech recognition libraries

about 189
CMU Sphinx 189
Julius 190
Pocket Sphinx 189

speech recognition, Python 198 204
speech recognition, ROS Indigo 204
speech recognition system

block diagram 188, 189
Speech SDK

installing 203
URL, for downloading 203

speech synthesis 190
speech synthesis, in Ubuntu 14.04.2

about 192
output 194

speech synthesis libraries
about 191
eSpeak 191
Festival 191

speech synthesis, Python 205, 206
speech synthesis, ROS Indigo 205, 206
speech synthesis stages

phonetic analysis 191
prosodic analysis 191
speech synthesis 191
text analysis 191

Stanford Research Institute (SRI) 10
start_chat.launch file 225
start_speech_chat.launch file 226, 227
start_tts_chat.launch file 226
state transitions 127
steering system 47, 48
synaptic 69
sys module 143
System On Chip (SOC) 167

T
text to speech (TTS) 108
tf

URL 77
Tiva C LaunchPad

about 102
ChefBot sensors, interfacing to 236, 237
DC geared motor, interfacing to 114-116
HC-SR04, interfacing to 138
interfacing, with Python 142, 143
MPU 6050, interfacing with 149, 150
quadrature encoder, interfacing

with 124, 125
URL 101

topics 56
Trig pin 139

[303]

truth table 116
TurtleBot

simulating, Gazebo used 72, 73
simulating, ROS used 72, 73
URL 21

TurtleBot packages
Gazebo model, creating from 74

TurtleBot robot chassis design 21
TurtleBot Robot packages

installing, on ROS Indigo 69-72
URL 69

TurtleBot ROS packages
installing, apt package manager used 72

U
Ubuntu 14.04.2

eSpeak, setting in 201
Festival, setting in 201
OpenNI, installing in 174
Pocket Sphinx, setting in 192
PyAIML, installing in 215
Python binding, setting in 192

Ubuntu 14.04.2 LTS
Qt, installing on 258

UI file
converting, into Python code 263, 264

ultrasonic distance sensors
HC-SR04, interfacing to Tiva C

LaunchPad 138
working with 137, 138

ultrasonic sensor
about 102
selecting 103

Unified Robot Description
Format. See URDF

Uniform Resource Identifier (URI) 249
Universal Asynchronous

Receiver/Transmitter (UART) 101
Unmanned Aerial Vehicles (UAVs) 147
URDF

about 76, 77
chefbot_base_gazebo.urdf.xacro 78
chefbot_base.urdf.xacro 78

chefbot_circles_kinect_urdf.xacro 79
chefbot_gazebo.urdf.xacro 78
chefbot_library.urdf.xacro 78
chefbot_properties.urdf.xacro 78
common_properties.urdf.xacro 79
functionality 78
kinect.urdf.xacro 79
URL 77

V
V-REP

about 46
URL 46

W
wave file

speech recognition, decoding from 193
web camera

image, capturing from 171, 172
webots 46
wheel base 284
wheel encoders 52
wheel odometry calibration

defining 284
error analysis, of wheel odometry 285, 286
error correction 286

wheels
selecting, for robot 96, 97

wheels, robot drive mechanism
selecting 19

Windows Speech SDK 190

X
xacro

about 76, 77
URL 77

Xbox Kinect
calibrating, ROS used 277

Y
yaw 47

Thank you for buying
Learning Robotics Using Python

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Building Machine Learning
Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on-guide

1.	 Master Machine Learning using a broad set
of Python libraries and start building your
own Python-based ML systems.

2.	 Covers classification, regression, feature
engineering, and much more guided by
practical examples.

3.	 A scenario-based tutorial to get into the
right mind-set of a machine learner (data
exploration) and successfully implement
this in your new or existing projects.

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2 Paperback: 278 pages

Create amazing robotic projects on a
shoestring budget

1.	 Make your projects talk and understand
speech with Raspberry Pi.

2.	 Use standard webcam to make your
projects see and enhance vision capabilities.

3.	 Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online for
developing robotics projects.

Please check www.PacktPub.com for information on our titles

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1.	 Learn how to dynamically adjust your
living environment with detailed
step-by-step examples.

2.	 Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3.	 Revolutionize the way you interact with
your home on a daily basis.

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1.	 Get to grips with robotic systems.

2.	 Communicate with your robot and teach
it to detect and respond to its environment.

3.	 Develop walking, rolling, swimming,
and flying robots.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Robotics
	What is a robot?
	History of the term robot
	Modern definition of a robot

	Where do robots come from?
	What can we find in a robot?
	A physical body
	Sensors
	Effectors
	Controllers

	How do we build a robot?
	Reactive control
	Hierarchical (deliberative) control
	Hybrid control

	Summary

	Chapter 2: Mechanical Design of a Service Robot
	Requirements of a service robot
	Robot drive mechanism
	Selection of motors and wheels
	Calculation of RPM of motors
	Calculation of motor torque

	The design summary
	Robot chassis design

	Installing LibreCAD, Blender, and MeshLab
	Installing LibreCAD
	Installing Blender
	Installing MeshLab

	Creating a 2D CAD drawing of the robot using LibreCAD
	The base plate design
	Base plate pole design
	Wheel, motor, and motor clamp design
	Caster wheel design
	Middle plate design
	Top plate design

	Working with a 3D model of the robot using Blender
	Python scripting in Blender
	Introduction to Blender Python APIs
	Python script of the robot model

	Questions
	Summary

	Chapter 3: Working with Robot Simulation Using ROS and Gazebo
	Understanding robotic simulation
	Mathematical modeling of the robot
	Introduction to the differential steering system and robot kinematics
	Explaining of the forward kinematics equation
	Inverse kinematics

	Introduction to ROS and Gazebo
	ROS Concepts

	Installing ROS Indigo on Ubuntu 14.04.2
	Introducing catkin
	Creating an ROS Package
	Hello_world_publisher.py
	Hello_world_subscriber.py
	Introducing Gazebo
	Installing Gazebo
	Testing Gazebo with the ROS interface
	Installing TurtleBot Robot packages on ROS Indigo
	Installing Turtlebot ROS packages using apt package manager in Ubuntu
	Simulating TurtleBot using Gazebo and ROS
	Creating the Gazebo model from TurtleBot packages
	What is a robot model, URDF, xacro, and robot state publisher?
	Creating a ChefBot description ROS package

	Simulating ChefBot and TurtleBot in a hotel environment

	Questions
	Summary

	Chapter 4: Designing ChefBot Hardware
	Specifications of the ChefBot hardware
	Block diagram of the robot
	Motor and encoder
	Selecting motors, encoders, and wheels for the robot

	Motor driver
	Selecting a motor driver/controller

	Embedded controller board
	Ultrasonic sensors
	Selecting ultrasonic sensor

	Inertial Measurement Unit
	Kinect
	Central Processing Unit
	Speakers/ mic
	Power supply/battery

	Working of the ChefBot hardware
	Questions
	Summary

	Chapter 5: Working with Robotic Actuators and Wheel Encoders
	Interfacing DC geared motor with Tiva C LaunchPad
	Differential wheeled robot
	Installing the Energia IDE
	Interfacing code

	Interfacing quadrature encoder with
Tiva C Launchpad
	Processing encoder data
	Quadrature encoder interfacing code

	Working with Dynamixel actuators
	Questions
	Summary

	Chapter 6: Working with Robotic Sensors
	Working with ultrasonic distance sensors
	Interfacing HC-SR04 to Tiva C LaunchPad
	Working of HC-SR04
	Interfacing Code of Tiva C LaunchPad
	Interfacing Tiva C LaunchPad with Python

	Working with the IR proximity sensor
	Working with Inertial Measurement Unit
	Inertial Navigation
	Interfacing MPU 6050 with Tiva C LaunchPad
	Setting the MPU 6050 library in Energia

	Interfacing code of Energia

	Interfacing MPU 6050 to Launchpad with the DMP support using Energia
	Questions
	Summary

	Chapter 7: Programming Vision Sensors Using Python and ROS
	List of robotic vision sensors and image processing libraries
	Introduction to OpenCV, OpenNI, and PCL
	What is OpenCV?
	Installation of OpenCV from source code in
Ubuntu 14.04.2
	Reading and displaying an image using the
Python-OpenCV interface
	Capturing from web camera

	What is OpenNI
	Installing OpenNI in Ubuntu 14.04.2

	What is PCL?

	Programming Kinect with Python using ROS, OpenCV, and OpenNI
	How to launch OpenNI driver
	The ROS interface of OpenCV
	Creating ROS package with OpenCV support
	Displaying Kinect images using Python, ROS,
and cv_bridge

	Working with Point Clouds using Kinect, ROS, OpenNI, and PCL
	Opening device and Point Cloud generation

	Conversion of Point Cloud to laser
scan data
	Working with SLAM using ROS and Kinect
	Questions
	Summary

	Chapter 8: Working with Speech Recognition and Synthesis Using Python and ROS
	Understanding speech recognition
	Block diagram of a speech recognition system
	Speech recognition libraries
	CMU Sphinx/Pocket Sphinx
	Julius

	Windows Speech SDK
	Speech synthesis
	Speech synthesis libraries
	eSpeak
	Festival

	Working with speech recognition and synthesis in Ubuntu 14.04.2 using Python
	Setting Pocket Sphinx and its Python binding in Ubuntu 14.04.2
	Working with Pocket Sphinx Python binding in Ubuntu 14.04.2
	Output

	Real-time speech recognition using Pocket Sphinx, GStreamer, and Python
in Ubuntu 14.04.2
	Speech recognition using Julius and Python in Ubuntu 14.04.2
	Installation of Julius speech recognizer and Python module
	Python-Julius client code
	Improving speech recognition accuracy in Pocket Sphinx and Julius
	Setting eSpeak and Festival in Ubuntu 14.04.2

	Working with speech recognition and synthesis in Windows using Python
	Installation of Speech SDK

	Working with Speech recognition in ROS Indigo and Python
	Installation of the pocketsphinx package in ROS Indigo

	Working with speech synthesis in ROS Indigo and Python
	Questions
	Summary

	Chapter 9: Applying Artificial Intelligence to ChefBot Using Python
	Block diagram of the communication system in ChefBot
	Introduction to AIML
	Introduction to AIML tags

	Introduction to PyAIML
	Installing PyAIML on Ubuntu 14.04.2
	Installing PyAIML from source code

	Working with AIML and Python
	Loading a single AIML file from the
command-line argument

	Working with A.L.I.C.E. AIML files
	Loading AIML files into memory
	Loading AIML files and saving them in
brain files
	Loading AIML and brain files using the Bootstrap method

	Integrating PyAIML into ROS
	aiml_server.py
	aiml_client.py
	aiml_tts_client.py
	aiml_speech_recog_client.py
	start_chat.launch
	start_tts_chat.launch
	start_speech_chat.launch

	Questions
	Summary

	Chapter 10: Integration of ChefBot Hardware and Interfacing it into ROS, Using Python
	Building ChefBot hardware
	Configuring ChefBot PC and setting ChefBot ROS packages
	Interfacing ChefBot sensors with Tiva C LaunchPad
	Embedded code for ChefBot

	Writing a ROS Python driver for ChefBot
	Understanding ChefBot ROS launch files
	Working with ChefBot Python nodes and launch files
	Working with SLAM on ROS to build the map of the room
	Working with ROS localization and navigation

	Questions
	Summary

	Chapter 11: Designing a GUI for a Robot Using Qt and Python
	Installing Qt on Ubuntu 14.04.2 LTS
	Working with Python bindings of Qt
	PyQt
	Installing PyQt in Ubuntu 14.04.2 LTS

	PySide
	Installing PySide on Ubuntu 14.04.2 LTS

	Working with PyQt and PySide
	Introducing Qt Designer
	Qt signals and slots
	Converting a UI file into Python code
	Adding a slot definition to PyQt code
	Up and running of Hello World GUI application

	Working with ChefBot's control GUI
	Installing and working with rqt in
Ubuntu 14.04.2 LTS

	Questions
	Summary

	Chapter 12: The Calibration and Testing of ChefBot
	The Calibration of Xbox Kinect using ROS
	Calibrating the Kinect RGB camera
	Calibrating the Kinect IR camera

	Wheel odometry calibration
	Error analysis of wheel odometry
	Error correction

	Calibrating the MPU 6050
	Testing of the robot using GUI
	Pros and cons of the ROS navigation

	Questions
	Summary

	Index

