

Android Wearable
Programming

Expand on your Android development capabilities by
building applications for Android Wear

Steven F. Daniel

BIRMINGHAM - MUMBAI

Android Wearable Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1270715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-015-3

www.packtpub.com

Cover image by Evelyn Lam (yeeyean@gmail.com)

www.packtpub.com

Credits

Author
Steven F. Daniel

Reviewers
Marcus Gabilheri

Andreas Göransson

Dr. Jibo He

Qian He

Jason Salas

Commissioning Editor
Priya Singh

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Amey Varangaonkar

Technical Editors
Utkarsha S. Kadam

Shiny Poojary

Copy Editor
Kausambhi Majumdar

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Steven F. Daniel is the owner and founder of GENIESOFT STUDIOS
(http://www.geniesoftstudios.com/), a software development company based
in Melbourne, Victoria, that focuses primarily on developing games and business
applications for the iOS, Android, Mac OS X and Windows platforms. He is an
experienced software developer with more than 14 years of experience in developing
desktop and web-based applications for a number of companies, including: ANZ,
Department of Justice, BP Australia, and AXA Australia.

Steven is always interested in emerging technologies and is a member of the
SQL Server Special Interest Group (SQLSIG), Melbourne CocoaHeads, and
Java Community.

He was the cofounder and Chief Technology Officer (CTO) of SoftMpire Pty Ltd., a
company that focused primarily on developing business applications for the iOS and
Android platforms.

Steven is the author of various book titles, such as Xcode 4 iOS Development Beginner's
Guide, iOS 5 Essentials, iPad Enterprise Application Development Blueprints, and
Xcode 4 Cookbook, all by Packt Publishing. You can check out his blog at http://www.
geniesoftstudios.com/blog/ or follow him on Twitter at http://twitter.com/
GenieSoftStudio.

http://www.geniesoftstudios.com/
http://www.geniesoftstudios.com/blog/
http://www.geniesoftstudios.com/blog/
http://twitter.com/GenieSoftStudio
http://twitter.com/GenieSoftStudio

Acknowledgments

No book is the product of just the author — he just happens to be the one with his
name on the cover. A number of people contributed to the success of this book and
it would take more space than I have to thank each one individually.

I would personally like to thank two special people who have been an inspiration
and who have provided me with so much support during the writing of this book:
Vivek Anantharaman, my acquisition editor, who is the reason that this book
exists, for being a wonderful guide throughout this whole process, and Amey
Varangaonkar for his understanding and support, as well as his brilliant suggestive
approaches during the chapter rewrites. Thank you for everything, guys.

Lastly, to my reviewers: thank you so much for your valuable suggestions and
improvements, making this book what it is today. I am extremely grateful to each
and every one of you.

Also, thanks to the entire Packt Publishing team for working so diligently to help
bring out a high-quality product. Finally, a big thank you to the engineers at Google
for creating the Android platform and providing developers with the tools to create
fun and sophisticated applications.

Finally, I'd like to thank all of my friends for their support, understanding, and
encouragement during the writing process. It is a privilege to know each and
every one of you.

About the Reviewers

Marcus Gabilheri is a computer science student at Oklahoma State University.
He was born in Brazil but lived in Spain for 11 years. He moved to the United States
to be with his wife, Carissa Gabilheri, and decided to go back to school in the U.S. to
follow his passion for programming. As a student at OSU, he has won the University's
Mobile App Competition 2 years in a row. Marcus actively participates in the
developer community as a Google Developer Group organizer and advocates Android
development as well other technologies. He works as a mobile and web developer for
Oklahoma State University and enjoys developing Android apps in his spare time. His
latest achievement was in the Google Fit developer's challenge, where he was one of
the 12 grand-prize winners of the challenge with his fitness app, FitHub.

I would like to thank my wife, Carissa Gabilheri, for understanding
and putting up with all the late nights and uncountable hours that
I spend in front of my computer. I would also like to say special
thanks to my mother, Adriana Andreo, and my grandmother, Maria
Antonia Andreo, for raising me by themselves and to my parents-in-
law, Randy and Donna Wilson, for accepting me into their family
when I moved from Brazil to the U.S.

Andreas Göransson has been programming mobile phones since before
smartphones became popular. He has previously written two books on Android
development and has been involved in several open source projects. Beyond his
interest in working on the family farm, he is very interested in emerging technologies,
specifically, Internet of Things, wearable devices, and cloud-based services.

Dr. Jibo He is currently an assistant professor at Wichita State University. He
graduated from Peking University in 2007 and the University of Illinois in 2012
with a research specialty in engineering psychology. He won the Star of Tomorrow
Award from Microsoft and was voted the Most Valuable Graduate by the University
of Illinois. He directs the Human Automation Interaction Lab at Wichita State
University. His lab does research on user experience, mobile devices, driving safety,
aviation psychology, and human computer interaction. The goal of his research is
to understand the human cognitive processes and develop technologies to improve
performance, increase user experience, and mitigate human error. He has experience
in developing for Google Glass, Android, iPhone, and smartwatches.

Qian He is an enthusiastic digital gadget lover and experienced software engineer.
He got his bachelor's degree in software engineering from Beijing Institute of
Technology. After working at IBM and studying at University of Chinese Academy
of Sciences, he decided to pursue a doctorate degree in the United States. Currently,
he is studying computer science at Worcester Polytechnic Institute. His main
research fields are ubiquitous computing and mobile health. Over the last few years,
Qian has been interested in wearable devices and has built several famous fitness
apps for Android / Android Wear / Pebble.

Jason Salas is a product manager, developer, sportscaster, author, and filmmaker
who enjoys a perpetual summer on the island of Guam.

He runs the R&D group for Guam's largest media company, where he also
co-anchors the nightly news.

Jason coauthored Designing and Developing for Google Glass (http://www.amazon.
com/dp/1491946458/ref=cm_sw_su_dp), by O'Reilly Media, published an e-book
about the trials and tribulations of a season in a semipro football league, and
previously contributed to a book on Microsoft Hailstorm. He's also a member of the
Football Writers Association of America.

You can find Jason at https://plus.google.com/+JasonSalas/posts.

http://www.amazon.com/dp/1491946458/ref=cm_sw_su_dp
http://www.amazon.com/dp/1491946458/ref=cm_sw_su_dp
https://plus.google.com/+JasonSalas/posts.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To my favorite uncle, Benjamin Jacob Daniel, for always making me smile and
inspiring me to work hard and achieve my dreams, I miss you a lot.

Chan Ban Guan, for the continued patience, encouragement, and support,
and most of all for believing in me during the writing of this book.

To my family, for their love and support, and always believing in me
throughout the writing of this book.

This book would not have been possible without everyone's love and understanding
and I would like to thank you all from the bottom of my heart.

[i]

Table of Contents
Preface v
Chapter 1: Understanding Android Wearables and Building
Your First Android Wear App	 1

Introducing Android wearables	 2
Understanding the Android Wear architecture	 3
Setting up an Android development environment	 6

Installing the Android Wear support library	 7
Setting up and configuring the Android (AVD) Emulator	 8

Building a simple Android wearable application	 10
Creating the mobile activity component	 12
Creating the Android Wear activity component	 14

Summary 19
Chapter 2: Creating Notifications	 21

Introducing Android notifications	 22
Creating a basic notification for wearables	 23

Specifying the form factors	 24
Adding and customizing a blank activity	 25
Adding dependencies to Gradle scripts	 26

Creating a custom notification for wearables	 33
Receiving voice input within a notification	 39
Receiving multiple notifications through a process called
page stacking	 43
Summary 49

Chapter 3: Creating, Debugging, and Packaging Wearable Apps	 51
Creating an Android wearable watch face app	 52
Presenting information inside the WatchFace class	 55
Creating a custom watch face service class	 60

Table of Contents

[ii]

Debug your Android wearable app over Bluetooth	 69
Running apps directly on an Android Wear device	 71
The Android wearable user interface guidelines	 76
Packaging your Android wearable application	 77
Summary	 83

Chapter 4: Sending and Syncing Data	 85
Creating a wearable send and receive application	 86
Creating a UI for the mobile activity	 92
Creating a UI for the wear activity	 94
Establishing connections for the mobile activity	 99
Sending messages to the Android wearable	 101
Receiving messages using MessageAPI	 104
Transferring image data to the Android wearable	 111
Receiving image data using DataApi	 114
Summary	 120

Chapter 5: Working with Google Glass	 121
Installing the Glass Development Kit preview	 122
Installing the Google USB drivers for Windows	 124
Creating and building a Google Glass application	 127

Setting the theme for the Google Glass app	 131
Configuring the project to run on Google Glass	 131
Creating the custom menu resource file	 134
Configuring the AndroidManifests file	 137
Creating the custom camera layout resource file	 139
Incorporating a voice input within Google Glass	 141
Accessing camera through Google Glass	 144
Incorporating the Google Maps API with Google Glass	 149
Modifying the Google Glass main activity UI	 154

Launching the app within Google Glass	 157
An introduction to GDK and the Google Mirror API	 157

The Mirror API playground	 158
The Google Glassware principle design guidelines	 160
Summary	 161

Table of Contents

[iii]

Chapter 6: Designing and Customizing Interfaces
for Android TV	 163

Creating and building an Android TV application	 164
Customizing the Android TV user interface	 167

Creating the CustomHeadersFragment class	 168
Creating the CustomRowsFragment class	 172
Creating the CustomFrameLayout class	 176
Creating the SearchActivity class	 179
Creating the SearchFragment class	 182
Creating the custom activity layout resource file	 185

The Android TV user interface design guidelines	 193
Summary	 194

Index	 195

[v]

Preface
Android Wear is becoming extremely popular, and offers a great opportunity for
developers to learn how to build applications for the Android Wear platform, which
is a special version of the core Android OS, and has been tailored for wearable
computing devices such as smartwatches. These wearable devices come with a brand
new user interface, which is the result of Google working with their customers to
understand how they use their phones today and how they can be more in touch
with their environment.

Android Wearable Programming provides a practical approach to developing
and building Android apps using the Android Studio Integrated Development
Environment. The new Android Studio IDE has introduced a specialized development
environment that has been welcomed by the emerging Android community. This IDE
is perfect to develop Android Wear apps because of the tight integration it has with the
Wear development APIs, and also the streamlined build cycle with Gradle that helps
to minimize a lot of manual configuration that the developer would need to do in
other IDEs.

In this book, I have tried my best to keep the code simple and easy to understand
by providing a step-by-step approach, with lots of screenshots at each step to make
it easier to follow. You will soon be mastering the different aspects of Android
Wear programming, as well as the technology and skills needed to create your
own applications for the Android Wear platform.

Feel free to contact me at support@geniesoftstudios.com if you have any queries,
or if you just want to drop by and say "Hello".

Preface

[vi]

What this book covers
Chapter 1, Understanding Android Wearables and Building Your First Android Wear App,
describes the background of the Android Wear platform architecture and shows you
how to set up and configure the Android development environment, before finally
looking at how to create a simple Android Wear app.

Chapter 2, Creating Notifications, introduces you to Android notifications, where you
will learn how to create basic and custom notification messages. You will learn how
to incorporate voice capabilities to read out the content of the notification, before
learning how to group multiple notification messages using page-stacking.

Chapter 3, Creating, Debugging, and Packaging Wearable Apps, focuses on designing and
creating custom watch faces to present information within the Android wearable
watch area. You will learn how to effectively debug your app over Bluetooth, before
finally learning how to package your wearable app so that it can be used within the
handheld mobile device.

Chapter 4, Sending and Syncing Data, introduces you to the Data Layer API and
the Message API frameworks, so that you can synchronize image data from the
handheld device with the wearable, as well as use the Message API to communicate
between the handheld and the wearable to send and receive messages.

Chapter 5, Working with Google Glass, explores how to build effective user interfaces
for the Google Glass platform by creating user interfaces that display content that
responds to voice input commands, before finally learning how we can access the
Glass camera to take a snapshot and save the image to local storage.

Chapter 6, Designing and Customizing Interfaces for Android TV, provides you with the
background and understanding of how to effectively present your app within the
main user interface and how you can design your app by following the Android
TV UI Patterns to help users get the content they want quickly. Also, you will learn
how to create and use fragments that allow information to be presented within the
Android TV interface to represent your content.

What you need for this book
For this book, you need a computer running a Windows, Mac OS, or Linux system.
You will also need to have the Android Studio IDE and both Java and Java Runtime
Environment installed on your system.

Preface

[vii]

Who this book is for
This book is intended for developers who have a working experience of the
application development principles for the Android platform and wish to expand
their Android capabilities by developing applications for Android wearables
using the key features of Android Studio. It's assumed that you are familiar
with object-oriented programming and the Java programming language.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

public class MainActivity extends ActionBarActivity {

 // Set up our Notification message ID
 int NOTIFICATION_ID = 001;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:21.0.3'
 compile 'com.android.support:support-v4:20.0.+'
}

Any command-line input or output is written as follows:

$./adb forward tcp:4444 localabstract:/adb-hub

$./adb connect localhost:4444

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Next, click
on the Install packages button as shown in the preceding screenshot."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Understanding Android
Wearables and Building Your

First Android Wear App
When Google announced Android Wear at their Google I/O conference back in
March 2014, developers were excited and started embracing this technology to
see what types of applications they could create to communicate between the
Android handheld device and Android wearable, while making our day-to-day
lives a lot easier.

Android wearables bring a personal touch by allowing consumers to interact with
their devices on a different level, and are aimed at reducing people's interaction
with their mobile phones. This could include receiving a simple notification message
reminding you to pick up something on your way home from work, or that you have
an upcoming appointment. There is even an ability to receive messages from your
favorite social networking application, for example, Facebook.

This chapter provides you with a theoretical background of Android, and how to
develop applications for the Android Wear platform from Google. This platform
allows your Android wearable device to communicate with your phone wirelessly
over Bluetooth, and many manufactures like Samsung and LG have embraced this
technology and created wearable devices, such as the Samsung Gear Live and
the LG G Watch R smartwatches.

Understanding Android Wearables and Building Your First Android Wear App

[2]

In later chapters, we will be working with some of these APIs and seeing how we can
incorporate these in our applications to communicate between our Android phone
and Android Wear devices.

This chapter includes the following topics:

•	 Introducing Android wearables
•	 Understanding the Android Wear architecture
•	 Building a simple Android wearable application

Introducing Android wearables
Android Wear is a special version of the core Android OS that has been tailored for
wearable computing devices such as smartwatches. These wearable devices come
with a brand new user interface, which is a result of Google working with their
customers to understand how they use their phones today and can be more in
touch with their environment.

Android Wear provides consumers with a more personal interaction with their
devices. These tiny supercomputers can show you information and suggestions
when you need them. Given the wide variety of Android applications currently
on the market, you'll receive the latest posts and updates from your favorite social
apps and notifications from shopping apps.

Android wearables are great for fitness fanatics too. They allow you to better monitor
your health and fitness by showing your fitness summary in terms of real-time speed,
distance, and time information right on your wrist for your run, cycle, or walk.

Android Wear also lets you access and control other devices from your wrist by
simply saying OK Google to fire up a music playlist on your phone or cast your
favorite movie directly onto your TV. You can also receive instant messages
from your favorite social networking app, for example, Facebook. With Android
wearables, there's a lot of possibilities, and developers are jumping right in and
creating some stunning apps already.

Chapter 1

[3]

An example of an Android wearable device can be seen in the following screenshot:

Understanding the Android Wear
architecture
Android Wear works by communicating wirelessly over Bluetooth between the
wearable and a handheld device (typically a smartphone) running Android 4.3 or
higher. When the handheld device has been paired with the wearable device, the
operating system begins sending a series of notification messages automatically to
the watch, along with any wearable-specific rich notification parameters, such as
voice input for actions and any specific pieces that provide additional information.

When a connection has been established between the Android device and the
wearable, over Google Play service, notification messages can be then exchanged
between the handheld device and the wearable to trigger appropriate actions on
each device.

The architecture of any typical wearable application has been set out by Google in
their design guideline documents that focus primarily on the new Material design
theme for Android 5.0 applications. This design document provides the developer
with a comprehensive framework to create visual, motion, and interaction design
across each of the various Android platforms and devices.

Understanding Android Wearables and Building Your First Android Wear App

[4]

Since Android Wear runs as a Bluetooth Low Energy (BLE) device, developers
need to ensure that they design their applications to run efficiently so that they don't
impact the device's battery. This is very important when designing the custom watch
faces or apps that use location service functionality.

The following image describes the architecture between the handheld device and the
wearable device. In the next section, we will take a look into some of the wearable
APIs that come as part of Google Play services, and explain their purpose when it
comes to communicating between the mobile device and the wearable:

Outer World

Android 4.4W Bluetooth

wearable .apk Message API

Node API

Data API

somehow

Play Store

Android Wear

Intents

Play Services

Awesome App
wearable.apk

.apk

Once the connection is established, you can then start looking at sending and
synching data between the two devices. When a connection between two devices has
been established, each node can handle any given number of different functions. For
example, one node can handle the camera part on the mobile, while another node
could keep track of a user's GPS coordinates on the wearable device.

In the following list, we will explain each of the APIs, which are presented in the
preceding screenshot. In later chapters, we will be using these in more depth,
so at this stage, I will just be providing a brief introduction:

•	 Node API: The NodeApi class is responsible for keeping track of all
connected or disconnected nodes that have been established within the
wearable network by using the NodeListener interface method. When
a node establishes a connection between the handheld and the wearable,
MessageApi quietly begins to send a message from the wearable device to
the handheld device that it is paired with, which the user is signed in to with
their Google account. This sends a notification to the NodeListener method
that then begins to get information about each node.

Chapter 1

[5]

•	 Message API: The MessageApi class is responsible for sending across short
messages to each of the connected network nodes between the wearable
and the handheld device. Once a message has been received, a background
listener service on the receiving side (MessageListener) will be called so
that it can get the message.

•	 Data API: The DataApi class is responsible for synching data between the
connected Android wearable and the handheld device, and takes care of
providing the synching mechanism on both sides. In addition to synching
data, the big appeal of the data API is that when a user's connection gets
disconnected from the paired smartphone, the data will be automatically
transferred when the connection is restored, without the user needing to
worry about handling data issues. When the data API receives messages
from MessageApi, a background listening service on the receiving side
(addListener) will be called as part of the DataListener interface method.
Once the addListener method determines that a change has occurred, a call
is made to the onDataChanged method.

It is extremely important that you remember to implement
WearableListenerService on both the Android wearable and
the handheld device in order to listen for the events received by
WearableListenerService.
It is worthwhile to mention that all of the Android Wear APIs are
included in Google Play services 5.0. It's important to note that wear itself
supports only 4.3 devices and above. This is basically due to the fact that
Android Wear requires Bluetooth LE, which is only available in 4.3 and
above versions.

In the following chapters of this book, we will be taking a look at how to implement
some of these APIs to communicate between our Android device and our wearable
device, so stay tuned.

Understanding Android Wearables and Building Your First Android Wear App

[6]

Setting up an Android development
environment
In this section, we are going to look at the key concepts to get you started with
Android Wear development. Google recommends using Android Studio for
development, because of the tight integration it has with the Wear development
APIs, as well as the streamlined build cycle with Gradle, that helps minimize a lot
of the manual configuration that the developer would need to do in other IDEs.

Before you begin, and as a prerequisite to starting to work with Android Studio,
you will need to ensure that your system has the latest version of the Java Runtime
Environment (JRE) installed for the version of the operating system that you are using.

To determine if your system has the JRE or the Java Development Kit
(JDK) installed, open a new terminal window and issue the following
command from the command line:
java –version

Once you have determined if you have Java installed, you can proceed to download
Android Studio for your version of the operating system. The Android Studio
package can be downloaded from the Android developer tools web page at
http://developer.android.com/sdk/installing/studio.html.

Android Studio for Windows systems can be downloaded from
https://dl.google.com/dl/android/studio/install/1.2.2.0/android-
studio-bundle-141.1980579-windows.exe.

Android Studio for Mac OS X systems can be downloaded from
https://dl.google.com/dl/android/studio/install/1.2.2.0/android-
studio-ide-141.1980579-mac.dmg.

Android Studio for Linux systems can be downloaded from
https://dl.google.com/dl/android/studio/ide-zips/1.2.2.0/android-
studio-ide-141.1980579-linux.zip.

Now that you have downloaded and installed Android Studio, you can begin
installing the Android 4.4W (API 20) for your system:

1.	 Launch Android SDK Manager by using the SDK Manager in Android
to download API level 20 (4.4 KitKat Wear).

http://developer.android.com/sdk/installing/studio.html
https://dl.google.com/dl/android/studio/install/1.2.2.0/android-studio-bundle-141.1980579-windows.exe
https://dl.google.com/dl/android/studio/install/1.2.2.0/android-studio-bundle-141.1980579-windows.exe
https://dl.google.com/dl/android/studio/install/1.2.2.0/android-studio-ide-141.1980579-mac.dmg
https://dl.google.com/dl/android/studio/install/1.2.2.0/android-studio-ide-141.1980579-mac.dmg
https://dl.google.com/dl/android/studio/ide-zips/1.2.2.0/android-studio-ide-141.1980579-linux.zip
https://dl.google.com/dl/android/studio/ide-zips/1.2.2.0/android-studio-ide-141.1980579-linux.zip

Chapter 1

[7]

2.	 Select and click on the Android 4.4W.2 (API 20) package:

You will notice that we have chosen to install the Android Wear system images for
both ARM and Intel. Intel delivers greater performance while running your app
using the Android Emulator, but you can select the appropriate one for your chipset.
If you decide to install both, the Android Studio IDE at design time will inform you
which one is supported.

In the next section, we will need to install the Android Wear support libraries for
our Android Wear application that will allow your Android wearable app to target
a specific version of the Android SDK APIs.

Installing the Android Wear support library
The Android Wear support library contains a set of numerous code libraries that
allow you to target a specific version of the Android SDK APIs. Each library contains
a different set of features that can help to improve the look of your application, and
with the release of Android 5.0 you can incorporate Material design as well as add
support for rich notification features.

Understanding Android Wearables and Building Your First Android Wear App

[8]

The benefit of using the latest Android Wear support libraries is that it allows your
applications to take advantage of the new and improved features for devices that are
running Android 5.0 and above. However, while your app can still run on devices
running Android 1.6 and above, some features will not be available:

Scroll down to the Extras folder, and select the Android Support Library, as shown
in the preceding screenshot. Next, click on the Install packages button as shown in
the preceding screenshot.

If you are using Android Studio for your Android Wear development, this can
provide you with a much easier and more convenient way of adding the Android
Wear support library to your existing applications. Android Studio uses a module
model, where the mobile and wear modules are part of a single project.

Setting up and configuring the Android (AVD)
Emulator
In our next step, we will need to set up and configure our Android Wear Emulator.
This will allow us to test our Android Wear apps that we will be developing
throughout this book.

Chapter 1

[9]

Open your Android Virtual Device (AVD) manager and create a new virtual device
for your Android Wear, as shown in the following screenshot:

Before we end this section, it is worth mentioning that while Android Emulator is the
most powerful and convenient tool that you will use throughout your development
of Android apps, it is important for developers to understand the types of limitations
it comes with, which are explained in the following points:

•	 The Android Emulator simulates real handheld device behavior, but not
specific hardware implementations

•	 Sensor information, such as satellite location, battery, and power settings,
as well as network connectivity, is all simulated using your computer

•	 Access to the camera hardware is not fully functional
•	 There is no ability to place or receive phone calls, or send SMS messages,

as these are all simulated
•	 There is no support for USB available

Understanding Android Wearables and Building Your First Android Wear App

[10]

As you can see, using the Android emulator is not recommended as a substitute for
testing your apps on a true handset or device. Now that we have set up all of the
preliminary configurations, we can start to build our Android Wear application.

Building a simple Android wearable
application
In this section, we will take a look at how to create a simple Hello World Android
Wear application by performing the following steps:

1.	 Launch Android Studio, and then navigate to the File | New Project option.
2.	 Next, enter in HelloAndroidWear for the Application name field.
3.	 Then provide a name for the Company Domain field.
4.	 Next, choose Project location where you would like to save your

application code:

Chapter 1

[11]

5.	 Finally, click on the Next button to proceed to the next step. On the second
wizard screen, we need to specify the form factors using which our
application will run. On this screen, we choose the Minimum SDK versions
for phone and tablet, Android TV, and Android Wear.

6.	 Click the Phone and Tablet option and choose the API 19: Android 4.4
(KitKat) option for Minimum SDK. Choosing this option allows your
application to target more devices that are active on the Google Play Store,
with the added cost of having fewer features available for these devices.

7.	 Next, click on the Wear option and choose the API 20: Android 4.4
(KitKat Wear) option for Minimum SDK:

8.	 Next, click on the Next button to proceed to the next step in the wizard.

Understanding Android Wearables and Building Your First Android Wear App

[12]

In our next step, we will be taking a look at how to add a blank activity to our
application for its mobile section.

An activity is basically an application component that provides a screen
with which users can interact in order to do something, such as dial the
phone, take a photo, send an e-mail, or view a map.
Each activity is given a container to draw its user interface. The container
typically fills the screen, but may be smaller than the screen and float on
top of other windows.

Creating the mobile activity component
Android Wear applications are actually built with two modules: mobile and wear. In
this section, we will take a look at how to add a blank activity for the mobile portion
of our Android Wear application. Although in this chapter we won't be using this
to communicate with our Android wearable device, in later chapters, when we
learn about notifications and how to send these between the mobile device and the
wearable, we will be using this component in more detail.

To add an activity for mobile, perform the following steps:

1.	 From the Add an activity to Mobile screen, choose the Blank Activity option
from the list of activities:

Chapter 1

[13]

2.	 Now, click on the Next button to proceed to the next step in the wizard.
In our next step, we need to set up and customize our Blank Activity
properties that can be used by our application. Here, we specify the name
of the activity, layouts, and title, as well as its menu resource name that it
will be using (if it contains a menu bar).

3.	 From the Customize the Activity screen, accept the default properties that
have been created for you by the wizard:

4.	 Click on the Next button to proceed to the next step in the wizard.

Understanding Android Wearables and Building Your First Android Wear App

[14]

Creating the Android Wear activity component
In this section, we will take a look at how to add a blank activity for the wearable
portion of our Android Wear application. This will be used to determine how our
Android wearable behaves. Once added, this will contain two different watch views:
one containing round watch faces and the other containing a square watch look.

To add an activity for Wear, follow these steps:

1.	 From the Add an activity to Wear screen, choose the Blank Wear Activity
option:

2.	 Click on the Next button to proceed to the final step in the wizard.
In our final step, we need to customize our Blank Wear Activity properties
that can be used by our Android wearable. Here, we specify the name of the
activity as well as the layouts for the watch faces for round and rectangle.

Chapter 1

[15]

3.	 From the Customize the Activity screen, accept the default properties that
have been created for you by the wizard:

4.	 Next, click on the Finish button to proceed, and your Android wearable
project will be generated for you. After a few moments, the Android Studio
window will be displayed with your project loaded.

When you take a look at the project that the wizard created for you, the first thing
you will notice is that it contains two modules: mobile and wear. The mobile portion
of our project is the application that will run on a phone device that will be used to
communicate with our wearable device. The wear portion is the application that will
be installed on the Android wearable device.

Understanding Android Wearables and Building Your First Android Wear App

[16]

When developing Android wearable applications, these cannot simply
be packaged separately and uploaded to the Google Play Store. You
must package both your mobile and wearable app into a single APK
application. This is so that when a user installs your application on their
Android device, the wear app will automatically be transferred to the
paired wear device.

As you can see in the following screenshot, the default project structure that our
wizard created for us doesn't seem to do anything special—it simply contains the
skeleton structure of any Android wearable app. In our next step, we will look at
how we can write our own code for the Wear module of our application:

In our next step, we will begin modifying our MainActivity class file to display
our custom Android wearable welcome message to the user within the wearable
watch face :

1.	 Open the HelloAndroidWear project from within our Project
Navigator window.

Chapter 1

[17]

2.	 From the Project Navigator window, expand the Wear section, select,
and expand the java section.

3.	 Modify the following code in the MainActivity.java file of the project:
private TextView watchTextView;
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 final WatchViewStub theWatchView = (WatchViewStub)
 theWatchView.setOnLayoutInflatedListener(new
 WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub
 theWatchView) {
 watchTextView = (TextView)
 theWatchView.findViewById(R.id.text);
 watchTextView.setText("Android Wear Rocks!");
 }
 });
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

In the preceding code snippet, we start by creating a new activity, which is handled
by the onCreate method. This method is responsible for starting the activity when
the application is launched and the emulator sets up the content, prior to displaying
the watch layouts on the screen using the setContentView method.

Next, we declare an instance of WatchViewStub, which is used to detect the specific
watch type being used at runtime and allows you to inflate a rectangular or round
layout. Since we cannot access these child views until inflation has completed, we
implement the OnLayoutInflatedListener interface to handle this, which allows
us to get a reference to the child views by using the findViewById class. Once we
have established this reference, we can then proceed to update the watchTextView
with our Android Wear Rocks! text.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Understanding Android Wearables and Building Your First Android Wear App

[18]

When we make a call to invoke the onLayoutInflated method
from inside our WatchViewStub class, this will begin to load the
corresponding layout resource for either the rect_activity_main.
xml file for our square view or the round_activity_main.xml
file for our round watch views. Once the view has inflated within its
parent view, this will then get added to the view hierarchy chain of
your application prior to making it visible.
If you would like to learn more about the activity lifecycle and the
different states that it takes on, you can refer to the documentation at
http://developer.android.com/reference/android/app/
Activity.html#ActivityLifecycle.

Now, we can finally compile, build, and run our application. Click on the green
button labeled B in the preceding screenshot or simply press
CMD + F9, and choose Android Virtual Device from the list of Android Emulators:

Once the emulator has launched and after a few moments, you should see your app
displayed, as shown in the preceding screenshot.

http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle

Chapter 1

[19]

Summary
In this chapter, we explored the features and key concepts of the Android Wear
platform; we discussed about the Android Wear architecture; and then we moved
on to look at how to configure our Android environment, setting up the Android
SDK and AVD, before finally taking a look at how to build our simple Android
wearable app.

In the next chapter, we will cover the features of Android notifications and explore
the different ways that we can send notifications between the handheld device and
the Android wearable to create basic and custom notifications. We will learn how
we can use the Android voice capabilities to allow the user to respond to notification
messages by using just their voice, and how we can use a method called page
stacking to receive multiple notifications.

[21]

Creating Notifications
This chapter provides you with a background of essential features of Android
notifications and how we can use these to send messages between a handheld device
and a wearable device.

We will be taking a look at how we can use different notification methods to develop
an application that shows how we can create basic and custom notifications. You will
also learn how you can incorporate and make use of Android's voice capabilities to
respond to notification messages that are contained within a notification.

At the end of the chapter, we will take a look at how we can use notification stacking
to display multiple notification messages within a notification.

This chapter includes the following topics:

•	 Introducing Android notifications
•	 Creating a basic notification for wearables
•	 Creating a custom notification for wearables
•	 Receiving voice input within a notification
•	 Receiving multiple notifications through a process called page stacking

Creating Notifications

[22]

Introducing Android notifications
Android notification is basically a way of communicating with the user. This is
done by letting the user know of an upcoming appointment or of an incoming call
or SMS message. The user can then decide how to respond to the option presented
to him/her.

Notifications in wear are the result of events that happen on the paired smartphone,
which are then mirrored on the wearable device, or contextual events like location-
aware events or time, and date-based reminders. Android notification messaging
works by communicating between the handheld device and wearable device over
Bluetooth. When the connection has been established, the Google Play Service
notification messages can be exchanged between the handheld device and the
wearable. An example of a notification message that has been sent from the Android
handheld device to the Android wearable can be seen in the following screenshot:

In the next sections, we will be taking a look at the different ways we can send
notifications and how we can respond to them.

Chapter 2

[23]

Creating a basic notification for
wearables
In this section, we will take a look at how to create a basic notification that will be
displayed on our wearable device. So let's get started!

Firstly, create a new project in Android Studio by following these simple steps:

1.	 Launch Android Studio, and then navigate to the File | New Project
menu option.

2.	 Next, enter WearNotifications for the Application name field.
3.	 Then, provide the name for the Company Domain field.
4.	 Next, choose Project location where you would like to save your

application code:

5.	 Finally, click on the Next button to proceed to the next step.

Creating Notifications

[24]

Specifying the form factors
Next, we will need to specify the form factors that our application will use,
as will be using a single module instead of the app and wear modules as discussed
previously in Chapter 1, Understanding Android Wearables and Building Your First
Android Wear App.

On the following screen we will need to choose the minimum SDK version for our
phone/tablet and perform the following steps:

1.	 Click on the Phone and Tablet option and choose the API 19: Android 4.4
(KitKat) option for Minimum SDK:

2.	 Next, click on the Next button to proceed to the next step.

Chapter 2

[25]

Adding and customizing a blank activity
In our next step, we will need to add Blank Activity to our application project
for the mobile section of our app. If you remember from Chapter 1, Understanding
Android Wearables and Building Your First Android Wear App, we had mentioned that
an activity is basically an application component that provides a screen that the users
can interact with. Perform the following steps to add and customize a blank activity:

1.	 From the Add an activity to Mobile screen, choose the Blank Activity option
from the list of activities shown and click on the Next button to proceed to
the next step:

Next, we need to customize the properties for Blank Activity so that it can
be used by our application. Here we will need to specify the name of our
activity, the layout information, and the title as well as its menu resource file.

Creating Notifications

[26]

2.	 From the Customize the Activity screen, accept the default properties that
the wizard has created for us:

3.	 Click on the Finish button. Your project will be generated by the wizard.
After a few moments, the Android Studio window will appear with your
project displayed.

Adding dependencies to Gradle scripts
In our next step, we need to add a new dependency to the Gradle Scripts section of
our project.

Chapter 2

[27]

This will provide us with the ability to send notification messages between the
handheld and the wearable device:

1.	 From the Project Navigator window, double-click on the build.gradle
(Module: app) node, which is located within the Gradle Scripts section
of Project Navigator, as shown in the following screenshot:

Gradle is the packaging tool that comes bundled with Android
Studio, and it takes care of building the application's APK
package. Gradle supports incremental builds and intelligently
determines what parts of the project source code are up to
date, without the need to recompile the whole project.

Creating Notifications

[28]

2.	 Next, under the dependencies section, add the following highlighted code:
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:21.0.3'
 compile 'com.android.support:support-v4:20.0.+'
}

3.	 Then, open the MainActivity.java file as shown in the following screenshot:

4.	 Next, modify the import statements within our MainActivity.java file with
the highlighted entries shown in the following code snippet:
import android.app.Notification;
import android.app.PendingIntent;
import android.support.v4.app.NotificationCompat;
import android.support.v4.app.NotificationManagerCompat;
import android.content.Intent;
import android.support.v7.app.ActionBarActivity;

Chapter 2

[29]

import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
// Handling Custom Notifications
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

// Handling Voice Notifications
import android.support.v4.app.RemoteInput;
import android.util.Log;

5.	 Next, from the Project Navigator window, open the strings.xml file,
which is located in the res | values folder, as follows:

Creating Notifications

[30]

6.	 Next, add the following highlighted entries as shown in the following
code snippet:
<resources>
<string name="app_name">WearNotifications</string>
<string name="action_settings">Settings</string>
<string name="notification_title">Wearable
 Notification</string>
<string name="basic_notify_msg">This is a basic
 Notification message</string>
<string name="notification_button">Send
 Notification</string>
<string name="notification_message">Custom notification
 message</string>
<string-array name="voice_choices">
<item>OK</item>
<item>Great</item>
<item>Im not sure</item>
</string-array>
</resources>

7.	 Next, we need to add our notification message ID to the MainActivity class.
This value can be any arbitrary string value, but each unique notification
will need to have it's own ID as it will be responsible for sending notification
message between our handheld device and the wearable. This is shown in
the following code snippet:
public class MainActivity extends ActionBarActivity {

 // Set up our Notification message ID
 int NOTIFICATION_ID = 001;

8.	 Then, modify the onCreate method as follows:
 @Override
 protected void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Clear all previous notifications and
 // generate new unique ids

Chapter 2

[31]

NotificationManagerCompat.from(this).cancelAll();

 Intent intent = new Intent(this, MainActivity.class);
 PendingIntent pendingIntent = PendingIntent.
getActivity(this, 0,
intent,
PendingIntent.FLAG_UPDATE_CURRENT);

 // Method to display our basic notification
 displayBasicNotification(pendingIntent);
 }

9.	 Next, we need to create a new displayBasicNotification method that
will be responsible for sending a basic notification message to the Android
wearable device, which is shown in the following code snippet:

// Method for displaying our basic notification message
public void displayBasicNotification(PendingIntent pendingIntent)
 {
// Set up our Notification Action class method
 NotificationCompat.Action action = new
NotificationCompat.Action.Builder(
R.mipmap.ic_launcher,
getString(R.string.notification_title),
pendingIntent)
.build();

Notification notification = new
NotificationCompat.Builder(MainActivity.this)
.setContentText(getString(R.string.basic_notify_msg))
.setContentTitle(getText(R.string.notification_title))
 .setSmallIcon(R.mipmap.ic_launcher)
 .extend(new
NotificationCompat.WearableExtender().addAction(action))
 .build();

NotificationManagerCompat notificationManagerCompat =
NotificationManagerCompat.from(MainActivity.this);
notificationManagerCompat.notify(NOTIFICATION_ID, notification);
}

Creating Notifications

[32]

In the preceding code snippet, we started by adding our import statements that are
responsible for handling the notifications between our Android handheld device
and the wearable device. Then we added a NOTIFICATION_ID constant variable
that is a unique identifier for our notification and will be responsible for sending
the notification between the handheld and the wearable device. Next, we call the
cancelAll() method to our NotificationManagerCompat class that cancels all
of the previously shown notifications prior to creation of the two class variables,
Intent and PendingIntent.

Intent is used to bind itself to the current activities connection at runtime to send
messages from one component to another within the same application context.
PendingIntent is basically a token that we provide to NotificationManager that
provides our application permission to perform operation, for the application's
current activity.

Then, specify FLAG_UPDATE_CURRENT on our PendingIntent class object to indicate
that pendingIntent already exists. This is basically to keep our pendingIntent
active so that we can replace the intent with the code declared by the new
Intent class and then the pendingIntent object is passed as a parameter to our
displayBasicNotification method.

Within our displayBasicNotification method, we begin by declaring a
NotificationCompat.Action action object that basically builds our notification
that will be shown as part of the notification and must include an icon, label, and
PendingItent that will be fired when the user selects the action.

We create a Notification object and a NotificationCompat.Builder class for the
main activity, and pass our notification message to the setContentText class and
specify its title and icon. We use the extend property to add support for wearable
devices and pass our action variable so that actions can be responded to by these
devices. Next, we use .build to construct our notification object and then specify
NotificationManagerCompat that accepts a .from property. This contains our
MainActivity class instance context, a .notify property that contains the ID of our
notification as specified by NOTIFICATION_ID, as well as the notification object that
will be used to post the notification to the system.

Chapter 2

[33]

Next, we can finally compile, build, and run our application. Simply press
CMD + F9 and choose your AVD or your Android handheld device from the
list of Android Emulators.

Once the emulator has launched, you should see the notification displayed in the
following screenshot:

As you can see, creating notifications is quite simple. In the next section, we will take
a look at how we can send a custom notification message entered by the user.

Creating a custom notification for
wearables
In this section, we will take a look at how we can create a custom notification
message that will be entered by the user within our code example. This will be done
on the paired smartwatch, with the notification being displayed on the Android
wearable device.

Creating Notifications

[34]

So let's get started:

1.	 First, open the activity_main.xml file, which is located in the res | layout
folder structure within Project Navigator, and add the highlighted entries as
shown in the following code snippet:
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Send notification"
 android:id="@+id/sendNotificationButton"
 android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />

<EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/customNotificationInput"
 android:minEms="10"
 android:gravity="center_horizontal"
 android:singleLine="true"
 android:layout_above="@+id/sendNotificationButton"
android:layout_centerHorizontal="true" />

</RelativeLayout>

Chapter 2

[35]

Now that we have created UIs for our application, we can proceed and start
to create the additional code that will hook up our button and text field
controls to their associated method events.

2.	 Open the MainActivity.java file from within the Project Navigator window.
3.	 Modify the onCreate method with the following highlighted code:

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Clear all previous notifications and
 // generate new unique ids
 NotificationManagerCompat.from(this).cancelAll();

Creating Notifications

[36]

 Intent intent = new Intent(this, MainActivity.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 // Method to handle our custom notifications
displayCustomNotification(pendingIntent);
 }

4.	 Next, create the displayCustomNotification method underneath the
displayBasicNotification method and add the following code:
 // Method for displaying our custom notification message
 public void displayCustomNotification(final PendingIntent
 pendingIntent) {

 // Get a reference to our Send Notifications Button
final Button mSendNotificationButton = (Button)
 findViewById(R.id.sendNotificationButton);
final EditText mSendNotificationInput = (EditText)
 findViewById(R.id.customNotificationInput);

 // Set our notification input hint message and
 // update the text for our button
 mSendNotificationInput.setHint(R.string.notification_message);
 mSendNotificationButton.setText(R.string.notification_button);

 // Set up our Send Notifications Button OnClick method
 mSendNotificationButton.setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View v) {
// Get a pointer to our entered in message textBox
 String message =
 mSendNotificationInput.getText().toString();

 // Set up our Notification Action class method
 NotificationCompat.Action action = new
 NotificationCompat.Action.Builder(
 R.mipmap.ic_launcher,

Chapter 2

[37]

 getString(R.string.notification_title),
 pendingIntent)
 .build();

 Notification notification = new
 NotificationCompat.Builder(MainActivity.this)
 .setContentText(message)
 .setContentTitle(getText(R.string.notification_title))
 .setSmallIcon(R.mipmap.ic_launcher)
 .extend(new
 NotificationCompat.WearableExtender().addAction(action))
 .build();
 NotificationManagerCompat notificationManagerCompat =
 NotificationManagerCompat.from(MainActivity.this);
 notificationManagerCompat.notify(NOTIFICATION_ID,
 notification);
 }
 });
 }

In the preceding code snippet, we started by calling the cancelAll() method to our
NotificationManagerCompat class to clear all of the previous notifications prior to
the creation of our class variables, Intent and PendingIntent. Next, we passed the
current class's PendingIntent object to our displayCustomNotification method
that will be responsible for displaying the custom message entered by the user.

Within our displayCustomNotification method, we begin by declaring two
objects, mSendNotificationButton and mSendNotificationInput. These objects
contain the reference to Button and EditTextField that will hold the text entered
by the user, and we proceed to set some properties for each of these fields.

Next, we set up a setOnClickListener object that will handle response to the
events when the user has tapped on the SEND NOTIFICATION button. Then we
specify our NotificationCompat.Action action object that basically builds our
notification object that will be shown as part of the notification service and must
include an icon, label, and PendingItent that will be fired when the user selects
the action.

Creating Notifications

[38]

We create a Notification object and a NotificationCompat.Builder class for
the main activity, pass the message entered by the user to the setContentText
class, and specify its title and icon. We use the extend property to add support for
wearable devices, and pass our action variable so that actions can be responded to
by these devices.

Next, we use .build to construct our notification object and then specify
NotificationManagerCompat that accepts a .from property that contains our
MainActivity class instance context, a .notify property that contains the ID
of our notification specified by NOTIFICATION_ID, as well as the notification
object that will be used to post the notification to the system.

Next, we can finally compile, build, and run our application. Simply press CMD
+ F9 and choose your AVD or Android handheld device from the list of Android
Emulators:

Chapter 2

[39]

Once the emulator has launched, you should see the custom notification
message displayed.

Enter some text within the text field using your Android handheld device, and
then click on the SEND NOTIFICATION button. After a couple of seconds, you
should see the custom notification you entered on your Android wearable and the
handheld device.

Receiving voice input within a
notification
In this section, we will be taking a look at how we can use notifications that can allow
the user to respond to these by simply using their voice. Since Android wearable
devices don't contain a keyboard, a user can swipe on a notification and respond to
the action using their voice, or simply by choosing from a list of options presented
to them, and tapping on the item right from their Android wearable device.

To receive voice input within a notification, perform the following steps:

1.	 Open the MainActivity.java file from within the Project Navigator window.
2.	 Modify the onCreate(Bundle savedInstanceState) method and add the

following highlighted code:
@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Clear all previous notifications and
 // generate new unique ids
 NotificationManagerCompat.from(this).cancelAll();

 Intent intent = new Intent(this, MainActivity.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 // Method to handle voice notifications
voiceNotifications(pendingIntent);
 }

Creating Notifications

[40]

3.	 Next, create the voiceNotifications method underneath the
displayCustomNotification method and add the following code:
// Method for handling our Voice Notifications
 public void voiceNotifications(PendingIntent pendingIntent)
 {
// Key for the string that's delivered in
 // the action's intent
 final String EXTRA_VOICE_REPLY = "extra_voice_reply";
 final String voiceOptions = "Choose one of these
options";
 String[] voiceChoices =
getResources().getStringArray(R.array.voice_choices);

 final RemoteInput remoteInput = new
RemoteInput.Builder(VOICE_NOTIFY_OPTIONS)
 .setLabel(voiceOptions)
 .setChoices(voiceChoices)
 .build();
// Call our voice notification
 handleVoiceNotifications(remoteInput, pendingIntent);

 // Get the users spoken voice message and display it
 CharSequence replyText = getMessageText(getIntent(),
 EXTRA_VOICE_REPLY);
 if(replyText != null) {
 Log.d("VoiceNotifications", "You replied: " +
 replyText);
 }
 }

4.	 Next, create the handleVoiceNotifications method underneath the
voiceNotifications method and add code as follows:
// Method for responding to Voice Notification messages
 public void handleVoiceNotifications(RemoteInput
remoteInput, PendingIntent pendingIntent)
 {
// Get a reference to our entered in message textBox
String message = "Please respond to this message";

Chapter 2

[41]

// Set up our Notification Action class method
NotificationCompat.Action action = new NotificationCompat.Action.
Builder(
 R.mipmap.ic_launcher,
getString(R.string.notification_title),
pendingIntent)
 .addRemoteInput(remoteInput) // Voice Input
 .build();

Notification notification = new
NotificationCompat.Builder(MainActivity.this)
.setContentText(message)
.setContentTitle(getText(R.string.notification_title))
.setSmallIcon(R.mipmap.ic_launcher)
.extend(new
NotificationCompat.WearableExtender().addAction(action))
.build();
NotificationManagerCompat notificationManagerCompat =
NotificationManagerCompat.from(MainActivity.this);
 notificationManagerCompat.notify(NOTIFICATION_ID,
notification);
 }

5.	 Next, create the getMessageText method underneath the
handleVoiceNotifications method and add the following:
 // Method that accepts an intent and returns the voice
 // response, which is referenced by the EXTRA_VOICE_REPLY
 // key.
 private CharSequence getMessageText(Intent intent,
 String EXTRA_VOICE_REPLY) {
 Bundle remoteInput =
 RemoteInput.getResultsFromIntent(intent);
 if (remoteInput != null) {
 return
 remoteInput.getCharSequence(EXTRA_VOICE_REPLY);
 }
 return null;
 }

Creating Notifications

[42]

In the preceding code snippet, we started by calling the cancelAll() method to our
NotificationManagerCompat class to clear all of the previous notifications prior
to the creation of class variables Intent and PendingIntent. Next, we added our
method call to voiceNotifications that will be responsible for setting up our voice
notifications. In this method, we begin by creating our EXTRA_VOICE_REPLY string
variable and our voiceChoices string array that will act as our group container and
contain our list of valid responses that the user can respond to using their voice. In
the next step, we begin by creating our RemoteInput.Builder class method that will
hold our label and list of choices that the user can respond to, by either using their
voice or tapping on them with their finger. This method will then display the spoken
text on the console window.

Next, we declare our handleVoiceNotifications method that will be responsible
for handling the voice notifications. This method accepts our remoteInput and
pendingIntent class as parameters and begins to declare a NotificationCompat.
Action action object. This basically builds our notification object that will be
shown as part of the notification service and must include an icon, label, and
PendingItent that will be fired when the user selects the action. One different
thing you will notice here is that we added a new property called addRemoteInput
and passed our remoteInput instance variable to this. This is done to collect the
input from the user when the response has been sent. Next, we start by creating our
notificationManager object based on our NotificationManagerCompat instance
class that accepts the .from property. This contains our current class instance
context, which is referred to as this. It also contains a .notify property that
contains the ID of our voice notification as specified by NOTIFICATION_ID, as well as
our notification object that will be used to post the notification to the system.

Finally, we create our getMessageText method that accepts the intent of our
Activity class that is carrying the information from the wearable, and returns back
the voice response. This is referenced by our EXTRA_VOICE_REPLY key back to our
voiceNotifications method to display the captured voice response to the user.

Chapter 2

[43]

Next, we can finally compile, build, and run our application. Simply press
CMD + F9 and choose your AVD or Android handheld device from the list
of Android emulators:

Once the emulator has launched, you should see the notification messages displayed
and grouped as shown in the preceding screenshot.

Receiving multiple notifications through
a process called page stacking
In the previous sections, we have looked at how we can use notifications to send
basic and customized notifications to our Android wearable device. In the final
section, we will look at how we can use our notification service to group notifications
through a process called page stacking.

Creating Notifications

[44]

This process helps us to intelligently collate and bundle similar items within a single
collection to provide us with easy navigation from the same app. So, let's get started:

1.	 Open the MainActivity.java file from within our Project Navigator window.
2.	 Modify the onCreate(Bundle savedInstanceState) method and add the

following highlighted code:
@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Clear all previous notifications and
 // generate new unique ids
 NotificationManagerCompat.from(this).cancelAll();

 Intent intent = new Intent(this, MainActivity.class);
 PendingIntent pendingIntent =
PendingIntent.getActivity(this, 0, intent,
PendingIntent.FLAG_UPDATE_CURRENT);

// Method to display our Page-Stacking notifications
displayPageStackNotifications();
 }

3.	 Next, create the displayPageStackNotifications method underneath the
handleVoiceNotifications method and add the following code:

// Method for displaying our page stacking
 // notification messages
 public void displayPageStackNotifications() {

 int stackNotificationId = 0;
 int MAX_NOTIFICATIONS = 2;

 // String to represent and group all of the notifications
 // that will be a part of it.

Chapter 2

[45]

 final String GROUP_NOTIFICATIONS = "group_notifications";

 // Group notification that will be visible on the phone
 Notification summaryNotification = new
 NotificationCompat.Builder(this)
 .setContentTitle(MAX_NOTIFICATIONS + "
 Notifications Received")
 .setContentText("You have received " +
 MAX_NOTIFICATIONS + " messages")
 .setSmallIcon(R.mipmap.ic_launcher)
 .setGroup(GROUP_NOTIFICATIONS)
 .setGroupSummary(true)
 .build();

 // Create our first view Intent
 Intent viewIntent1 = new Intent(this, MainActivity.class);
 PendingIntent viewPendingIntent1 =
 PendingIntent.getActivity(this,
 (stackNotificationId + 1), viewIntent1, 0);

 Notification notification1 = new
 NotificationCompat.Builder(this)
 .addAction(R.mipmap.ic_launcher, "Sounds Great",
 viewPendingIntent1)
 .setContentTitle("Movie Message")
 .setContentText("Do you want to go to the
 movies?")
 .setSmallIcon(R.mipmap.ic_launcher)
 .setGroup(GROUP_NOTIFICATIONS)
 .build();

 // Create our second view intent
 Intent viewIntent2 = new Intent(this, MainActivity.class);
 PendingIntent viewPendingIntent2 =
 PendingIntent.getActivity(this,
 (stackNotificationId + 2), viewIntent2, 0);

Creating Notifications

[46]

 Notification notification2 = new
 NotificationCompat.Builder(this)
 .addAction(R.mipmap.ic_launcher, "Why not",
 viewPendingIntent2)
 .setContentTitle("Red Wine Message")
 .setContentText("Another glass of Red Wine?")
 .setSmallIcon(R.mipmap.ic_launcher)
 .setGroup(GROUP_NOTIFICATIONS)
 .build();

 // Issue our group notification message
 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(this);
 notificationManager.notify(stackNotificationId,
 summaryNotification);
 // Then, issue each of our separate wearable notifications
 notificationManager.notify((stackNotificationId + 1),
 notification1);
 notificationManager.notify((stackNotificationId + 2),
 notification2);
 }

In the preceding code snippet, we started by adding our import statements that are
responsible for handling the notifications between our Android handheld device and
the wearable device, just like how we created the basic and custom notifications.

Just like our previous examples in this chapter, we make a call to the cancelAll()
method in our NotificationManagerCompat class to clear all of the previous
notifications prior to the creation of our class variables, Intent and PendingIntent.
Next, we add the method call to displayPageStackNotifications that will be
responsible for displaying our page stacking notifications. In this method, we
begin by initializing stackNotificationId, which will be used to keep a track
of each notification that we create. We then create a MAX_NOTIFICATIONS variable
that contains the total number of page stacking notifications, and then create a
GROUP_NOTIFICATIONS string that contains our group container to hold each of
our notifications.

Chapter 2

[47]

In our next step, we begin by creating our group notification class using our
NotificationCompat.Builder class method as we did in the previous sections, but
with one difference, that is we include the setGroup and setGroupSummary properties.

The setGroup property groups all of your notifications in a single card, and then
allows you to scroll through each of these on your wearable device.

The setGroupSummary property allows you to provide a summary as part of your
page stacking notification, for example, it shows how many unread messages
you have. In the next step, we start by creating our view that will be used for our
first notification and get the intent and pendingIntent current classes. Then
we increment stackNotification for our first view and begin setting up our
notification adding it as part of our GROUP_NOTIFICATIONS group. After this, we do
the same for our next notifications view and increment the number by one each time,
so that we do not override the previous notifications intent view before adding this
item as part of our group.

Finally, we create our notificationManager object based on the instance of
the NotificationManagerCompat class that accepts the .from property. This
contains our current class instance context, which is referred to as this. It also
contains a .notify property that has the ID of our stack notification as specified
by stackNotificationId, as well as our summaryNotification object that will
be used to post the notification to the system. Then we begin issuing each of our
separate wearable notifications using our notificationManager.notify method
and passing stackNotificationId to our notification service, as well as the
notification that we want to start posting.

Next, we can finally compile, build, and run our application. Simply press
CMD + F9 and choose your AVD or your Android handheld device from the
list of android emulators.

Creating Notifications

[48]

Once the emulator has launched, you should see the notification messages displayed
and grouped as shown in the following screenshot:

The preceding screenshot shows the current notification workflow including each of
the respective screens when the user responds to the actions.

Android Wear often displays a confirmation screen after user
input, which can be programmatically manipulated, either with an
animation or a timer-based confirmation that lets the user cancel
their selection. To obtain further information about this process, it
is worth checking out the Showing Confirmations documentation at
https://developer.android.com/training/wearables/
ui/confirm.html.

https://developer.android.com/training/wearables/ui/confirm.html
https://developer.android.com/training/wearables/ui/confirm.html

Chapter 2

[49]

Summary
In this chapter, we explored the various ways by which we are able to send
notifications between the handheld device and the Android wearable. We looked
at how to build a simple Android handheld app with customized notifications for
Android Wear to show different types of notifications. Next, we looked at how to
send basic and custom notification messages, which can be customized by the user.
Also, we looked at how we can use notifications that can be responded to by the
user using their voice.

In the final part of this chapter, we looked at how we can receive multiple
notifications on our Android wearable, and group these by using a process
called page stacking.

In the next chapter, we will gain an understanding of how we can build effective
UIs to create, customize, and draw watch faces using Google's official API that
will provide us the ability to present information within the watch area.

[51]

Creating, Debugging, and
Packaging Wearable Apps

This chapter will provide you with the background and understanding of how you
can build and package your own apps for Android Wear. We will learn how we can
draw our own Android watch face using Google's official API, and also to present
information within the watch area.

We will learn how to create a custom class that inherits from Google's latest watch
face service API that will enable us to respond to watch face events to handle screen
updates, draw watch face elements, and respond to changes between the interactive
and ambient modes.

Finally, we will learn how we can effectively debug an Android wearable application
over Bluetooth, and then take a look at the Android design principles to ensure that
our application conforms to these. Then we will move on to learn how to package
an Android wearable application so that it can communicate and be used by our
handheld device.

This chapter includes the following topics:

•	 Creating a custom Android Wear watch face service class
•	 Presenting information inside a custom watch face
•	 Using Bluetooth to debug your Android wearable app
•	 Running your app directly on the Android wearable device
•	 Introducing the Android wearable user interface guidelines
•	 Packaging your Android wearable app within a handheld device

Creating, Debugging, and Packaging Wearable Apps

[52]

Creating an Android wearable watch
face app
Prior to Google releasing the official Android watch face API in December 2014,
developers had to find alternative ways to present information inside the watch face
layout. In this section, we will take a look at the steps required to create a custom
watch face service that will enable us to communicate with our watch and present
information within the watch face area on the home screen.

Firstly, create a new project in Android Studio by following these simple steps:

1.	 Launch Android Studio, and then navigate to the File | New Project
menu option.

2.	 Next, enter in CustomWatchFace for the Application name field.
3.	 Then, provide the name for the Company Domain field.
4.	 Next, choose Project location where you would like to save your

application code:

Chapter 3

[53]

5.	 Click on the Next button to proceed to the next step.
Next, we will need to specify the form factors for our phone/tablet and
Android Wear devices that our application will run on. On this screen, we
will need to choose the minimum SDK version for our phone/tablet and
Android Wear.

6.	 Click on the Phone and Tablet option and choose API 19: Android 4.4
(KitKat) for Minimum SDK.

7.	 Click on the Wear option and choose the API 21: Android 5.0 (Lollipop)
option for Minimum SDK as we want to use the watch face service API:

Creating, Debugging, and Packaging Wearable Apps

[54]

8.	 Click on the Next button to proceed to the next step.
In the next step, we need to specify that we don't want to add an activity
for both the mobile and wear sections of our application.

9.	 From the Add an activity to Mobile screen, choose the Add No Activity
option from the list of activities shown, and click on the Next button to
proceed to the next step:

Next, we need to specify that we don't want to add an activity for the wear
section of our Android wearable application.

Chapter 3

[55]

10.	 From the Add an activity to Wear screen, choose the Add No Activity
option from the list of activities shown, and click on the Finish button:

At this point, the wizard will generate your project, and after a few moments the
Android Studio window will appear with your project displayed in it. In the next
section, we proceed by creating a custom Android WatchFace class that will be
used to present content and update the watch face user interface.

Presenting information inside the
WatchFace class
In this section, we will proceed to create our custom WatchFace class that will be used
to invoke the methods within the watch face service and this class will be responsible
for allocating and initializing the resources that our watch face requires.

First, we need to create a new class called CustomWatchFace, as follows:

1.	 From the Project Navigator window, expand the wear section and select
and expand the java section.

2.	 Next, right-click and choose the New | Java Class menu option.

Creating, Debugging, and Packaging Wearable Apps

[56]

3.	 Then, enter CustomWatchFace to be used as the name for our class and click
on the OK button to open the Android Studio code editor window.
Our next step is to write the code that will communicate with our Android
wearable device. For this, we will need to create a new class that will act as
our watch service.

4.	 Open CustomWatchFace.java as shown in the preceding screenshot.
5.	 Next, enter the import statements as shown in the following code snippet:

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import java.util.TimeZone;
import java.text.SimpleDateFormat;
import java.util.Calendar;

6.	 Now, modify the CustomWatchFace class as shown in the following
code snippet:
public class CustomWatchFace {
 private final Paint timeObject;
 private final Paint dateObject;
 private final Paint batteryObject;
 private String dateText;
 private String timeText;
 public String batteryText;

 private static final String TIME_FORMAT = "kk:mm:ss a";
 private static final String DATE_FORMAT = "EEE, dd MMM yyyy";

 // Declare our class constructor
 public static CustomWatchFace newInstance(Context context) {
 Paint batteryObject = new Paint();
 batteryObject.setColor(Color.RED);
 batteryObject.setTextSize(25);
 Paint timeObject = new Paint();
 timeObject.setColor(Color.GREEN);
 timeObject.setTextSize(35);
 Paint dateObject = new Paint();

Chapter 3

[57]

 dateObject.setColor(Color.WHITE);
 dateObject.setTextSize(35);

 return new CustomWatchFace(timeObject, dateObject,
batteryObject);
 }
 CustomWatchFace(Paint objTime, Paint objDate, Paint
 objBattery) {
 this.timeObject = objTime;
 this.dateObject = objDate;
 this.batteryObject = objBattery;

 // Initialize our Battery Information
 batteryText = "Level: 0%";
 }
// Method to update the watch face each time an update
// has occurred
public void draw(Canvas canvas, Rect bounds) {
 canvas.drawColor(Color.BLACK);
 timeText = new
 SimpleDateFormat(TIME_FORMAT).format(Calendar.getInstance().
 getTime());
 dateText = new
 SimpleDateFormat(DATE_FORMAT).format(Calendar.getInstance().
 getTime());
 float timeXOffset = calculateXOffset(timeText, timeObject,
 bounds);
 float timeYOffset = calculateTimeYOffset(timeText,
 timeObject, bounds);
 canvas.drawText(timeText, timeXOffset, timeYOffset,
 timeObject);
 float dateXOffset = calculateXOffset(dateText, dateObject,
 bounds);
 float dateYOffset = calculateDateYOffset(dateText,
 dateObject);
 canvas.drawText(dateText, dateXOffset, timeYOffset +
 dateYOffset, dateObject);
 float batteryXOffset = calculateXOffset(batteryText,
 batteryObject, bounds);

Creating, Debugging, and Packaging Wearable Apps

[58]

 float batteryYOffset = calculateBatteryYOffset(batteryText,
 batteryObject);
canvas.drawText(batteryText, batteryXOffset, dateYOffset +
batteryYOffset, batteryObject);
 }
 // Calculate our X-Offset using our Time Label as the offset
 private float calculateXOffset(String text, Paint paint,
Rect watchBounds) {
float centerX = watchBounds.exactCenterX();
 float timeLength = paint.measureText(text);
 return centerX - (timeLength / 2.0f);
 }
 // Calculate our Time Y-Offset
 private float calculateTimeYOffset(String timeText, Paint
 timePaint, Rect watchBounds) {
 float centerY = watchBounds.exactCenterY();
 Rect textBounds = new Rect();
 timePaint.getTextBounds(timeText, 0,
 timeText.length(), textBounds);
 int textHeight = textBounds.height();
 return centerY + (textHeight / 2.0f);
 }
 // calculate our Date Label Y-Offset
 private float calculateDateYOffset(String dateText, Paint
 datePaint) {
 Rect textBounds = new Rect();
 datePaint.getTextBounds(dateText, 0,
 dateText.length(), textBounds);
 return textBounds.height() + 10.0f;
 }
 // Calculate our Battery Label Y-Offset
 private float calculateBatteryYOffset(String batteryText,
 Paint batteryPaint) {
 Rect textBounds = new Rect();
 batteryPaint.getTextBounds(batteryText, 0,
 batteryText.length(), textBounds);
 return textBounds.height() + 40.0f;
 }

Chapter 3

[59]

 public void setAntiAlias(boolean antiAlias) {
 batteryObject.setAntiAlias(antiAlias);
 timeObject.setAntiAlias(antiAlias);
 dateObject.setAntiAlias(antiAlias);
 }
 // Set each of our objects colors
 public void setColor(int red, int green, int white) {
 batteryObject.setColor(red);
 timeObject.setColor(green);
 dateObject.setColor(white);
 }
 // method to get our current timezone and update the time
field
 public void updateTimeZoneWith(String timeZone) {
 // Set our default time zone
 TimeZone.setDefault(TimeZone.getTimeZone(timeZone));
 // Get the current time for our current timezone
 timeText = new
 SimpleDateFormat(TIME_FORMAT).format(Calendar.
getInstance().
 getTime());
 }
}

In the preceding code snippet, we started by adding the import statements that are
responsible for communicating. Also, we declared our CustomWatchFace class and
the variables that will be responsible for holding our date, time, and battery data as
well as the date and time formats defined by our TIME_FORMAT and DATE_FORMAT
variables. Next, we declared our class constructor that will be called when the class
is instantiated by our WatchFaceService class and will be responsible for setting
the font sizes and colors for our Date, Time, and Battery objects.

The draw method is called whenever an update is required for the watch face canvas
defined by our WatchFaceService class, which is handled by the onTimeTick callback
that fires every 60 seconds by default. This also handles any UI updates when our
watch face goes into ambient mode. We use the Calendar object declared in our
java.util.Calendar package to obtain the current time and format using the
TIME_FORMAT and DATE_FORMAT formatters.

Creating, Debugging, and Packaging Wearable Apps

[60]

Next, we make a call to each of the calculateXOffset, calculateTimeYOffset,
calculateDateYOffset, and calculateBatteryYOffset methods to position each
of our labels within our watch face using the watch face dimensions, and then make
a call to our drawText method on our WatchFace canvas for each of our elements to
add these to the watch face view.

The setAntiAlias method is used to minimize the pixels used in ambient mode
that is being drawn within the watch face area so that the content is smooth.
Our WatchFaceService class calls the setColor method whenever the view
enters ambient or interactive mode and updates the colors accordingly. The
updateTimeZoneWith method updates when the users adjust their time zone; the
system broadcasts this event and the time will be automatically updated accordingly.

In our next section, we will create a custom Android watch face service class that
will be used to communicate with our Google wear API, so that we can configure
our system user interface.

Creating a custom watch face service
class
In this section, we will proceed to create our custom watch face service class that will
be used to invoke the methods within the watch face service API. This class will be
responsible for allocating and initializing the resources that our watch face requires.
Watch faces are services and shouldn't be confused with activities, as these types of
services only accept touch input and voice commands as a form of interaction.

Chapter 3

[61]

First, we need to create a new class called WatchFaceService:

1.	 From the Project Navigator window, expand the wear section and select
and expand the java section.

2.	 Next, right-click and choose the New | Java Class menu option:

Creating, Debugging, and Packaging Wearable Apps

[62]

3.	 Then, enter WatchFaceService to be used as the name for our class and
click on the OK button:

4.	 Upon clicking the OK button, the Android Studio code editor will open, as
shown in the following screenshot:

Chapter 3

[63]

Our next step is to write the code that will communicate with our Android
wearable device. For this, we will need to create a new class that will act as
our watch service.

5.	 Open WatchFaceService.java as shown in the preceding screenshot.
6.	 Next, enter the import statements as shown in the following code snippet:

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Rect;
import android.os.BatteryManager;
import android.os.Handler;
import android.os.Looper;
import android.support.wearable.watchface.CanvasWatchFaceService;
import android.support.wearable.watchface.WatchFaceStyle;
import android.view.SurfaceHolder;
import java.util.Calendar;

7.	 Now, modify the WatchFaceService class as follows:
// Create our WatchFaceService Class
public class WatchFaceService extends CanvasWatchFaceService {
@Override
 public Engine onCreateEngine() {
 return new WatchFaceEngine();
 }
 // Create our WatchFaceEngine Class
 private class WatchFaceEngine extends
 CanvasWatchFaceService.Engine {
 }
......
}

Creating, Debugging, and Packaging Wearable Apps

[64]

8.	 In this step, we need to add the code for our WatchFaceEngine class by
creating an onCreate(SurfaceHolder holder) method that will be called
when the watch is instantiated and this will initialize the watch face, as
shown in the following code snippet:
 private CustomWatchFace watchFace;
 private Handler clockTick;

@Override
 public void onCreate(SurfaceHolder holder) {
 super.onCreate(holder);
 setWatchFaceStyle(new
 WatchFaceStyle.Builder(WatchFaceService.this)
.setCardPeekMode(WatchFaceStyle.PEEK_MODE_SHORT)
.setAmbientPeekMode(WatchFaceStyle.
AMBIENT_PEEK_MODE_HIDDEN)
.setBackgroundVisibility(WatchFaceStyle.BACKGROUND_
 VISIBILITY_INTERRUPTIVE)
.setShowSystemUiTime(false)
.build());

 clockTick = new Handler(Looper.myLooper());
registerBatteryInfoReceiver();
startTimerIfNecessary();
watchFace =
CustomWatchFace.newInstance(WatchFaceService.this);
 }

9.	 Next, we need to create a method for the WatchFaceEngine class that will
be called to update the watch display when the number of seconds has
incremented. This can be done as follows:
 private void startTimerIfNecessary() {
 clockTick.removeCallbacks(timeRunnable);
 if (isVisible() && !isInAmbientMode()) {
 clockTick.post(timeRunnable);
 }
 }

Chapter 3

[65]

10.	 Now, we need to create and implement a new class instance of a runnable
object and include a method called run that starts executing the active class.
The following code snippet shows how to do this:
private final Runnable timeRunnable = new Runnable() {
 @Override
 public void run() {
onSecondTick();
if (isVisible() && !isInAmbientMode()) {
 long TICK_PERIOD_MILLIS =
 Calendar.getInstance().get(Calendar.MILLISECOND);
 clockTick.postDelayed(this, TICK_PERIOD_MILLIS);
 }
 }
 };
 // Method to handle when the seconds are updating
 private void onSecondTick() {
 invalidateIfNecessary();
 }
 // stops any updates to the view, at which point the
 // onDraw method will be called at some point in the
 // future to refresh the view.
private void invalidateIfNecessary() {
if (isVisible() && !isInAmbientMode())
invalidate();
}

11.	 Here, we create the onVisibilityChanged method that is called when the
watch face is visible and is responsible for registering the receiving methods
when the time zone changes and starts the custom timer if the device is
in interactive mode. When the watch face is not visible, this method stops
the custom timer and unregisters the receiver for time zone changes. The
registerReceiver and unregisterReceiver methods are implemented,
for example, when the battery level changes. Have a look at the following
code snippet:
@Override
 public void onVisibilityChanged(boolean visible) {
 super.onVisibilityChanged(visible);
 if (visible) {
registerTimeZoneReceiver();

Creating, Debugging, and Packaging Wearable Apps

[66]

registerBatteryInfoReceiver();
 }
 else {
 unregisterTimeZoneReceiver();
 unregisterBatteryInfoReceiver();
 }
startTimerIfNecessary();
 }
 private void registerTimeZoneReceiver() {
 IntentFilter timeZoneFilter = new
IntentFilter(Intent.ACTION_TIMEZONE_CHANGED);
 registerReceiver(timeZoneChangedReceiver,
 timeZoneFilter);
 }
 private BroadcastReceiver timeZoneChangedReceiver = new
 BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent){
 if (Intent.ACTION_TIMEZONE_CHANGED.equals(intent.
getAction())) {
watchFace.updateTimeZoneWith(intent.getStringExtra("time-zone"));
 }
 }
 };
// method to unregister our detected timezone receiver
 private void unregisterTimeZoneReceiver() {
 unregisterReceiver(timeZoneChangedReceiver);
 }
 // Register a broadcast message to get the battery level
 private void registerBatteryInfoReceiver() {
 IntentFilter batteryInfoFilter = new
 IntentFilter(Intent.ACTION_BATTERY_CHANGED);
 registerReceiver(batteryInfoChangedReceiver,
 batteryInfoFilter);
 }
 // Method to receive the message sent by the battery info
 // receiver class
 private BroadcastReceiver batteryInfoChangedReceiver = new
 BroadcastReceiver() {

Chapter 3

[67]

 @Override
 public void onReceive(Context context, Intent intent){
 if
 (Intent.ACTION_BATTERY_CHANGED.equals(intent.getAction()))
 {
 watchFace.batteryText =
 String.valueOf("Battery: " +
 intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 0) + "%");
 }
 }
 };
 // method to unregister our battery information receiver
 private void unregisterBatteryInfoReceiver() {
 unregisterReceiver(batteryInfoChangedReceiver);
 }

12.	 In the following step, we create the onDraw method that will be responsible
for handling and updating the watch face on the main runnable thread when
the view comes out of the ambient mode. The onTimeTick method is called
whenever the timer ticks and calls the invalidate method, which tells the
system to call the onDraw method to redraw the watch face as shown in the
following code snippet:
 @Override
 public void onDraw(Canvas canvas, Rect bounds) {
 super.onDraw(canvas, bounds);
 watchFace.draw(canvas, bounds);
 }
 @Override
 public void onTimeTick() {
 super.onTimeTick();
 invalidate();
 }

13.	 Next, we create the onAmbientModeChanged method that determines
when the device changes between ambient and interactive modes. We
perform a check to see if we are in ambient mode, and change the color
of our display labels for Date, Time, and Battery labels before calling the
invalidate method so that the system will redraw the watch face. This is
done as follows:
@Override
 public void onAmbientModeChanged(boolean inAmbientMode) {
 super.onAmbientModeChanged(inAmbientMode);

Creating, Debugging, and Packaging Wearable Apps

[68]

 watchFace.setAntiAlias(!inAmbientMode);
 if (!inAmbientMode) {
 watchFace.setColor(Color.RED, Color.GREEN,
 Color.WHITE);
 }
 else watchFace.setColor(Color.GRAY, Color.GRAY,
 Color.GRAY);
 invalidate();
 startTimerIfNecessary();
 }

14.	 Now, we create the onDestroy method that handles the destroying of our
callback methods declared by the register methods as follows:

 @Override
 public void onDestroy() {
 clockTick.removeCallbacks(timeRunnable);
 super.onDestroy();
 }
 }

In the preceding code snippets, we started by adding the import statements
that will be responsible for allowing our application to communicate with the
Android wearable. Then we added the code for our WatchFaceEngine class by
creating onCreate(SurfaceHolder holder) that will be called when the watch is
instantiated, as this will initialize the watch face.

In our next step, we create a startTimerIfNecessary method that will be called to
update the watch display when the number of seconds has incremented and proceed
to implement runnable class that includes a method called run that starts executing
the active class. The onVisibilityChanged method is called when the watch face is
visible, and is responsible for registering the receiving methods when the time zone
changes, and starts the custom timer if the device is in interactive mode.

When the watch face is not visible, this method stops the custom timer and
unregisters the receiver for time zone changes. The registerReceiver and
unregisterReceiver methods are implemented for instance, when the battery level
changes. The onDraw method is responsible for handling updates to the watch face
on the main runnable thread when the view comes out of the ambient mode. The
onTimeTick method is called whenever the timer ticks and calls the invalidate
method, which tells the system to call the onDraw method to redraw the watch face.

Chapter 3

[69]

We proceed to implement the onAmbientModeChanged method that will be
responsible for determining whenever the device changes between the ambient
and interactive modes. Next, we check to see if we are in ambient mode and change
the color of our display labels for Date, Time, and Battery labels before calling the
invalidate method, so that the system will redraw the watch face before finally
destroying all of our callback methods declared by the register methods in the
onDestroy method.

Debug your Android wearable app over
Bluetooth
In this section, we will be taking a look at the steps involved in debugging your
wearable application over Bluetooth. This process uses the Android debug bridge
to facilitate communications between the handheld and the wearable devices
by routing its debug output to the handheld device that is connected to your
development machine.

To set up your device for debugging, follow these simple steps:

1.	 Enable USB debugging on the handheld device by opening the Settings app
and then scrolling down till until you see Developer options.

2.	 From the Developer options section, scroll down to and enable USB
debugging as shown in the following screenshot:

Creating, Debugging, and Packaging Wearable Apps

[70]

3.	 Next, open the Android Wear companion app on the handheld device.
4.	 Click on the Settings cog that is located on the top right-hand corner of the

screen, scroll down, and enable Debug over Bluetooth, which is shown in
the following screenshot:

5.	 Next, connect your handheld device to your machine using USB and enter the
following command line options, which are shown in the following screenshot:
$./adb forward tcp:4444 localabstract:/adb-hub

$./adb connect localhost:4444

Chapter 3

[71]

6.	 If you open the Android wearable app on your handheld device, you should
see that the host and target statuses should have now changed to connected,
as shown in the following screenshot:

Running apps directly on an Android
Wear device
In this section, we will be taking a look at the steps involved in running an Android
wearable app directly on the wearable device, instead of running this inside the
Android simulator.

Creating, Debugging, and Packaging Wearable Apps

[72]

Before we can run the apps on our Android wearable device, first we need to make
some changes to our project configuration as follows:

1.	 This can be achieved by choosing Run | Edit Configurations… from
Android Studio menu as shown in the following screenshot:

Next, since our project doesn't contain any activity modules, we need to
make some adjustments to our project configuration.

2.	 From the Run/Debug Configurations screen, select the wear configuration
option located within the Android Application section.

3.	 Then, select the Do not launch Activity option located within the
Activity section.

Chapter 3

[73]

4.	 Next, select the Show chooser dialog option located within the Target
Device section, and click on the OK button to proceed to save your
changes as shown in the following screenshot:

5.	 From the Project Navigator window, choose the wear section and then select
the manifests folder.

Creating, Debugging, and Packaging Wearable Apps

[74]

6.	 Select the AndroidManifest.xml file as shown in the following screenshot:

7.	 Next, under the manifest section of the wearable app we need to include
permissions to allow our app to run within the wearable device. Enter the
permissions as shown in the following code snippet:
<uses-permission android:name="com.google.android.permission.
PROVIDE_BACKGROUND"/>
<uses-permission android:name="android.permission.WAKE_LOCK"/>

8.	 Now modify the <application> section of the wearable app, as follows:
<application
 android:allowBackup="true"
 android:label="@string/app_name"
 android:icon="@mipmap/ic_launcher"
 android:theme="@android:style/Theme.DeviceDefault">
<service
android:name=".WatchFaceService"
android:label="@string/app_name"
android:permission="android.permission.

Chapter 3

[75]

BIND_WALLPAPER">
<meta-data
android:name="android.service.wallpaper"
android:resource="@xml/watch_face" />
<meta-data
android:name="com.google.android.wearable.
watchface.preview"
android:resource="@mipmap/ic_launcher" />
<meta-data
android:name="com.google.android.wearable.
watchface.preview_circular"
android:resource="@mipmap/ic_launcher" />
<intent-filter>
<action
android:name="android.service.wallpaper.
 WallpaperService"/>
<category
android:name="com.google.android.wearable.
 watchface.category.WATCH_FACE"/>
</intent-filter>
</service>
</application>

9.	 Now, we can finally begin to compile, build, and run our application. Simply
press CMD + F9, and choose your AVD or your Android wearable device
from the list of available devices as shown in the following screenshot:

Creating, Debugging, and Packaging Wearable Apps

[76]

Once the wearable app has been installed on the Android wearable device, you should
see our custom watch face being displayed, as shown in the following screenshot:

As you can see, creating Android watch faces is quite simple and you can create
some really cool watch face designs. From the preceding screenshot, the image to
the left shows the non-ambient version and the one to the right shows the image
when the screen has dimmed, thus conserving battery life.

In our next section, we will take a look at the Android design principles, and
the importance of designing user interfaces that are intuitive, consistent, and
are designed with battery considerations in mind to conserve power.

The Android wearable user interface
guidelines
The approach to designing apps for Android wearable devices, especially custom
watch faces, needs to be substantially different from how you go about designing
apps for phones or tablets, as these contain a different user experience. It is important
to keep in mind and follow the Android UI design principles documentation that
Google has provided.

This document describes the guidelines and principles that help you to design
consistent user interfaces and experiences for your Android wearable apps, ensure
that your application runs efficiently on the Android Wear platform, and it also
involves considering the screen sizes of your custom layouts, memory limitations,
and the ease of use of your app.

Chapter 3

[77]

Other areas covered by the document are guidelines to ensure the consistency of
your application as you navigate from screen to screen, as well as principles to
design good user interfaces. This document also includes the following design
guidelines that you will need to follow in your application, such as:

•	 Your application works for the round and square watch face designs,
as well as their different screen resolutions.

•	 Your Android Wear app supports ambient mode when it is not being used,
as this will conserve battery power. This involves dimming the screen and
only using limited color, while keeping most of the pixels black. When the
user taps on the screen to exit ambient mode, the screen can revert back to
using full color and animations.

•	 Your app functionality allows the user to swipe down on the home screen
to reveal the date and battery display, while providing the ability for further
swiping down to turn off device sounds as well as preventing notifications
from being displayed on the home screen.

There is also information relating to the proper use and appearance of system UI
elements and controls for navigation, as well as creation of custom icons and images.

To obtain further information about these guidelines, it is worthwhile to
check the Android Wear Design Principles documentation at https://
developer.android.com/design/wear/principles.html.

Packaging your Android wearable
application
After you have finished testing your application to ensure that it is free of bugs, you
are ready to publish your app to the world. Before this can happen, you must publish
your wearable app directly inside a handheld application. This is due to the fact that
your users cannot directly install your app to the wearable device.

https://developer.android.com/design/wear/principles.html
https://developer.android.com/design/wear/principles.html

Creating, Debugging, and Packaging Wearable Apps

[78]

Fortunately, this process is not that difficult, and in just a few steps you will be able
to package your application using Android Studio. Let's get started by following
these simple steps:

1.	 From the Gradle Scripts section of the Project Navigator window, select the
build.gradle (Module: mobile) option as shown in the following screenshot:

2.	 Next, under the dependencies section, enter the following code snippet:
compile 'com.android.support:support-v4:21.0.+'

You need to ensure that both your wearable and handheld app
modules contain the same package name and version, otherwise
you will experience build errors.

Chapter 3

[79]

3.	 From the mobile section of the Project Navigator window, select the
manifests folder and then the AndroidManifest.xml file as follows:

4.	 Next, under the manifest section of the handheld app, we need to include
all permissions declared in our wearable app module in the manifest file of
the handheld app module.

5.	 Then, enter the following permissions:
<uses-permission android:name="com.google.android.permission.
PROVIDE_BACKGROUND"/>
<uses-permission android:name="android.permission.WAKE_LOCK"/>

Creating, Debugging, and Packaging Wearable Apps

[80]

6.	 Now, navigate to Build | Generate Signed APK… as shown in the
following screenshot:

7.	 From the Module drop-down menu, choose the mobile option, and click
on the Next button as shown in the following screenshot:

Chapter 3

[81]

8.	 Next, from the Generate Signed APKWizard screen, click on the Create
new… button, and then click on the Next button as follows:

9.	 From the New Key Store screen, specify the location where you would like
to store your key by clicking on the … button beside the Key store path
text field.

It is extremely important that you don't lose this key, otherwise you
won't be able to upload new updates to the Google Play Store if the
keys are different.

10.	 Then, provide a password to use for your key store file, an alias name to use
for your application, populate the Certificate information, click on the OK
button to dismiss the screen, and return back to the Generate Signed APK
Wizard screen.

Creating, Debugging, and Packaging Wearable Apps

[82]

11.	 From the Generate Signed APK Wizard screen, click on the Next button,
and then under the Build Type drop-down menu, choose the release option,
and click on the Finish button.

12.	 Once the wizard has finished packaging your application, you will see the
Signed APK's generated successfully dialog appear. Click on the Reveal in
Finder button to show your mobile-release.apk packaged app as shown
in the following screenshot:

The preceding screenshot shows the workflow when generating a signed APK with
the associated screens. As you can see, the APK will export your signed handheld
application using Android Studio for your packaging process, and through this
process, automatically include the wearable application portion embedded inside it.

When a user downloads and installs your app, they will be
installing the mobile component on their handheld device, which
automatically pushes the wearable app to their smartwatch.

Chapter 3

[83]

Summary
In this chapter, we learned how we can build a custom watch face by using
Google's official API so that we can create our very own custom watch face service
and custom watch face class to handle the presentation of a digital clock with date
and time, as well as battery usage within the watch face layout.

Then we looked at how we can debug our wearable applications with Bluetooth that
are running in the wearable device. Next, we spent some time learning about the
design guidelines for Android wearable and the design considerations developers
need to consider when designing their user interfaces, specifically to conserve
battery power when running resource-intensive tasks.

In closing, we looked at the steps involved when packaging our wearable
application so that it can be sent to users to be installed and used within the
handheld mobile device.

In the next chapter, we will learn more about the data layer API and how we can
synchronize data from the Android wearable with the handheld mobile device.
We will learn about the message API that will provide us with the ability to send
and receive messages, and finally we will learn how to build an Android Wear
watch service to communicate with the data layer events.

[85]

Sending and Syncing Data
This chapter will provide you with the background and understanding of how you
can effectively build applications that communicate between the Android handheld
device and the Android wearable, send messages and compressed blob image data
over Bluetooth to the Android wearable device, and then present this information
within the wearable watch face area.

Android Wear comes with a number of APIs that will help to make communicating
between the handheld and the wearable a breeze. We will be learning the differences
between using MessageAPI, which is sometimes referred to as a "fire and forget" type
of message, and DataLayerAPI that supports syncing of data between a handheld
and a wearable, and NodeAPI that handles events related to each of the local and
connected device nodes.

We will learn how to use DataLayerAPI to send an image from our handheld
device to the wearable device, and then use MessageAPI, which will enable us
to send and receive messages between the handheld and the wearable using the
DataAPI event methods.

This chapter includes the following topics:

•	 Creating an Android wearable app to send and receive information
•	 Setting up the UI for our handheld app
•	 Setting up the UI for our Android wearable
•	 Establishing communication between the handheld and the wearable
•	 Sending and receiving messages between the handheld and the

wearable device
•	 Sending and receiving images sent from the handheld to the wearable device

Sending and Syncing Data

[86]

Creating a wearable send and receive
application
In this section, we will take a look at how to create an Android wearable application
that will send an image and a message, and display this on our wearable device.
In the next sections, we will take a look at the steps required to send data to the
Android wearable using DataAPI, NodeAPI, and MessageAPIs.

Firstly, create a new project in Android Studio by following these simple steps:

1.	 Launch Android Studio, and then click on the File | New Project
menu option.

2.	 Next, enter SendReceiveData for the Application name field.
3.	 Then, provide the name for the Company Domain field.
4.	 Now, choose Project location and select where you would like to save your

application code:

Chapter 4

[87]

5.	 Click on the Next button to proceed to the next step.
Next, we will need to specify the form factors for our phone/tablet and
Android Wear devices using which our application will run. On this screen,
we will need to choose the minimum SDK version for our phone/tablet and
Android Wear.

6.	 Click on the Phone and Tablet option and choose API 19: Android 4.4
(KitKat) for Minimum SDK.

7.	 Click on the Wear option and choose API 21: Android 5.0 (Lollipop) for
Minimum SDK:

8.	 Click on the Next button to proceed to the next step.
In our next step, we will need to add Blank Activity to our application
project for the mobile section of our app.

Sending and Syncing Data

[88]

9.	 From the Add an activity to Mobile screen, choose the Add Blank Activity
option from the list of activities shown and click on the Next button to
proceed to the next step:

Next, we need to customize the properties for Blank Activity so that it can
be used by our application. Here we will need to specify the name of our
activity, layout information, title, and menu resource file.

Chapter 4

[89]

10.	 From the Customize the Activity screen, enter MobileActivity for
Activity Name shown and click on the Next button to proceed to the
next step in the wizard:

In the next step, we will need to add Blank Activity to our application
project for the Android wearable section of our app.

Sending and Syncing Data

[90]

11.	 From the Add an activity to Wear screen, choose the Blank Wear Activity
option from the list of activities shown and click on the Next button to
proceed to the next step:

Next, we need to customize the properties for Blank Wear Activity so that
our Android wearable can use it. Here we will need to specify the name of
our activity and the layout information.

Chapter 4

[91]

12.	 From the Customize the Activity screen, enter WearActivity for Activity
Name shown and click on the Next button to proceed to the next step in
the wizard:

13.	 Finally, click on the Finish button and the wizard will generate your project
and after a few moments, the Android Studio window will appear with your
project displayed.

Sending and Syncing Data

[92]

Creating a UI for the mobile activity
In this section, we need to build the UI for the Android handheld activity section of
our application. This will enable us to communicate and send messages and images
between the Android wearable and the Android handheld device.

To create the user interface for the mobile activity, follow these simple steps:

1.	 From the Project Navigator window, choose the mobile section and open
the activity_mobile.xml file that is located in the res | layout folder, and
add the following highlighted code:
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
xmlns:tools="http://schemas.android.com/tools" android:layout_
width="match_parent"
android:layout_height="match_parent" android:paddingLeft="@dimen/
activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".MobileActivity">

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:inputType="textMultiLine"
 android:minEms="10"
 android:id="@+id/send_message_input"
 android:layout_marginTop="87dp"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/send_message_button"
 android:id="@+id/send_message_button"
 android:layout_below="@+id/send_message_input"
 android:layout_centerHorizontal="true" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/send_image_button"
 android:id="@+id/send_image_button"

Chapter 4

[93]

 android:layout_below="@+id/send_message_button"
 android:layout_centerHorizontal="true" />
</RelativeLayout>

2.	 Again from the Project Navigator window, choose the mobile section, open
the strings.xml file that is located in the res | values folder, and add the
highlighted code as follows:
<resources>
 <string name="app_name">SendReceiveData</string>
 <string name="action_settings">Settings</string>
 <string name="send_image_button">Send an image to
 Android Wear</string>
 <string name="send_message_button">Send the
 Message to Android Wear</string>
 <string name="send_message_text">Enter a message
 to send</string>
</resources>

3.	 In the same Project Navigator window, choose the mobile section, select the
manifests folder, and then select the AndroidManifest.xml file as shown in
the following screenshot:

Sending and Syncing Data

[94]

4.	 Next, under the manifest section of the mobile handheld app, we need to
include permissions to allow our app to run within the handheld device.
Enter the following permission:
<uses-permission android:name="android.permission.INTERNET"></
uses-permission>

5.	 Now, modify the <application> section of the handheld app and enter the
code sections highlighted in the following snippet:

<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MobileActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version"/>
 </activity>
</application>

In our next section, we will need to create the user interface for the wearable portion
of our application. This will be used to display messages and images sent from the
handheld device to the wearable watch area.

Creating a UI for the wear activity
In this section, we need to build the user interface for the Android wearable activity
section of our application. This will enable us to receive messages and images sent
from the Android handheld device and have this information presented within the
Android wearable watch area.

Chapter 4

[95]

Perform the following steps:

1.	 From the Project Navigator window, open the rect_activity_wear.xml
file that is located in the res | layout folder, and add the following code:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".WearActivity"
 tools:deviceIds="wear_square">

 <TextView
 android:layout_width="92dp"
 android:layout_height="31dp"
 android:minEms="10"
 android:id="@+id/received_message_input"
 android:layout_marginTop="20dp"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_gravity="center_horizontal" />

 <ImageView
 android:layout_width="111dp"
 android:layout_height="95dp"
 android:id="@+id/received_image_input"
 android:layout_below="@+id/received_message_input"
 android:adjustViewBounds="false"
 android:layout_marginLeft="10dp"
 android:layout_marginTop="20dp"
 android:layout_marginRight="10dp"
 android:layout_marginBottom="100dp"
 android:layout_gravity="center_horizontal" />
</RelativeLayout>

2.	 Next, open the round_activity_wear.xml file that is located in the res |
values folder within Project Navigator and add the code sections as follows:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/
res/android"
xmlns:tools="http://schemas.android.com/tools" android:layout_
width="match_parent"
android:layout_height="match_parent" tools:context=".WearActivity"
tools:deviceIds="wear_round">

Sending and Syncing Data

[96]

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:minEms="10"
 android:id="@+id/received_message_input"
 android:layout_marginTop="87dp"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />
 <ImageView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/received_image_input"
 android:layout_below="@+id/received_message_input"/>

</RelativeLayout>

3.	 Now from the Project Navigator window, choose the wear section, select the
manifests folder, and then select the AndroidManifest.xml file as shown in
the following screenshot:

4.	 Then, modify the <application> section of the wearable app, and enter the
following highlighted code sections:
<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"

Chapter 4

[97]

 android:label="@string/app_name"
 android:theme="@android:style/Theme.DeviceDefault" >
 <activity
 android:name=".WearActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <!-- Allow communication with Google Play
 Services -->
 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/
 google_play_services_version"/>
 </activity>
</application>

5.	 Now, from the Project Navigator window open the MobileActivity.java
file as shown in the following screenshot:

Sending and Syncing Data

[98]

6.	 Then, add the following import statements to the MobileActivity.java file
with the highlighted entries:

import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.util.Log;
import android.view.View;
import java.io.ByteArrayOutputStream;
import java.net.URL;
import java.util.Random;
import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.Node;
import com.google.android.gms.wearable.NodeApi;
import com.google.android.gms.wearable.PutDataMapRequest;
import com.google.android.gms.wearable.Wearable;
import com.google.android.gms.common.api.GoogleApiClient.
ConnectionCallbacks;
import com.google.android.gms.common.api.GoogleApiClient.
OnConnectionFailedListener;
import com.google.android.gms.wearable.Asset;
import com.google.android.gms.wearable.DataMap;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.widget.Button;
import android.widget.EditText;

In the preceding code snippet, we started by adding the import statements that will
be responsible for handling communication and will enable us to send messages and
image data between our Android handheld device and the Android wearable. In the
next section, we will be taking a look at how we can establish connections between
our handheld and mobile device, as well as hook up buttons and text field controls to
their associated method events.

Chapter 4

[99]

Establishing connections for the
mobile activity
Until now, we have created our project and the user interface for the mobile in
our application. Also, we have set up our permissions so that our application can
communicate with the Internet and Google Play Services.

In order for our app to communicate between the handheld and the Android
wearable, we will need to establish a connection:

1.	 From the Project Navigator window, expand the mobile section, select,
and expand the java section.

2.	 Next, double-click to open MobileActivity.java, and add the following
code snippet:
public class MobileActivity extends ActionBarActivity {

 private GoogleApiClient mGoogleApiClient;
 private static final String LOG_TAG = "MobileActivity";

 // establishes a connection between the mobile and wearable
 private void initGoogleApiClient() {
 if (mGoogleApiClient != null &&
 mGoogleApiClient.isConnected()) {
 Log.d(LOG_TAG, "Connected");
 }
 else
 {
 // Creates a new GoogleApiClient object with all
 // connection callbacks
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.d(LOG_TAG, "onConnected: " + connectionHint);
 }
 @Override
 public void onConnectionSuspended(int
 cause) {

Sending and Syncing Data

[100]

 Log.d(LOG_TAG, "onConnectionSuspended: "
 + cause);
 }
 })
 .addOnConnectionFailedListener(new
 OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
 result) {
 Log.d(LOG_TAG, "onConnectionFailed: " + result);
 }
 })
 .addApi(Wearable.API)
 .build();

 // Make the connection
 mGoogleApiClient.connect();
 }
 }

3.	 Now, we need to create the activity callback methods that will be responsible
for starting, stopping, resuming, and terminating the app, as shown in the
following code snippet:
 @Override
 protected void onStart() {
 super.onStart();
 initGoogleApiClient();
 }

 @Override
 protected void onStop() {
 super.onStop();
 mGoogleApiClient.disconnect();
 }

 @Override
 protected void onResume() {
 super.onResume();
 initGoogleApiClient();
 }

Chapter 4

[101]

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mGoogleApiClient.disconnect();
 }

In the preceding code snippet, we started by declaring our GoogleApiClient
object variable that will be responsible for establishing and handling the connection
between the Android handheld and the Android wearable device.

Next, we created our initGoogleApiClient() method that implements the
GoogleApiClient.ConnectionCallbacks interface to handle all of the connection
callbacks returned by GoogleApiClient. When GoogleApiClient has successfully
established a connection with the wearable device, the callback method calls the
onConnected method. If any errors have been detected, these will be caught by the
onConnectionFailed callback method.

Then, we declare our onStart(), onStop(), onResume(), and onDestroy() activity
class methods. The onStart() method will be called whenever the activity becomes
visible and is displayed to the user, and the onResume() method is called after the
onStart() method when the activity is displayed in the foreground. The onStop()
method is called when the activity is no longer visible to the user, which happens
when another activity has been resumed, or the current one is being destroyed.
The onDestroy() method will be called once the activity has been removed from
the activity chain, and is responsible for destroying any memory that has been
previously allocated to variables from the memory.

Sending messages to the Android
wearable
In this section, we will be taking a look at the steps involved in sending a message
to your Android wearable device. This process is quite simple, and our next step
is to write the code that will communicate between our Android wearable and the
handheld device:

1.	 From the Project Navigator window, open the MobileActivity.java file.
2.	 Next, modify the onCreate(Bundle savedInstanceState) method and

enter the code highlighted as follows:
@Override
protected void onCreate(Bundle savedInstanceState) {

Sending and Syncing Data

[102]

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_mobile);

 // Get a pointer to our buttons and textField
 final Button mSendMessageButton = (Button)
 findViewById(R.id.send_message_button);
 final EditText mSendMessageInput = (EditText)
 findViewById(R.id.send_message_input);

 // Set up our hint message for our Text Field
 mSendMessageInput.setHint(R.string.send_message_text);

3.	 Next, we need to set up an onClickListener method in
sendMessageButton as shown in the following code snippet:

// Set up our send message button onClick method handler
mSendMessageButton.setOnClickListener(new
View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Create a new thread to send the entered message
 Thread thread = new Thread(new Runnable()
 {
 @Override
 public void run()
 {
 try {
 String messageText =
 mSendMessageInput.getText().toString();
 NodeApi.GetConnectedNodesResult nodes =
 Wearable.NodeApi.
 getConnectedNodes(mGoogleApiClient).await();
 for (Node node : nodes.getNodes()) {
 result = Wearable.MessageApi.
 sendMessage(mGoogleApiClient,
 node.getId(), "/message",
 messageText.getBytes()).await();
 }
 runOnUiThread(new Runnable() {
 @Override
 public void run() {

Chapter 4

[103]

 mSendMessageInput.getText().clear();
 }
 });
 }
 catch (Exception e) {
 Log.e(LOG_TAG,
 e.getMessage());
 }
 }
 });
 // Starts our Thread
 thread.start();
 Log.d(LOG_TAG, "Message has been sent");
 }
});

In the preceding code snippet, we started by declaring two objects,
mSendMessageButton and mSendMessageInput. These objects contain the reference
to our button and the EditTextField will hold the text entered by the user. We
proceed to set some properties for each of these fields. Next, we proceed to set up
a setOnClickListener object that will handle and respond to the events when the
user has tapped on the Send the Message to Android Wear button.

In our next step, we create a new thread object that inherits from the Thread
class that includes a run method that will be used to execute the active class and
then declare a messageText string variable. This extracts the text entered by the
user, and then we use NodeApi.getConnectedNodes() to get a list of all nodes that
are currently connected to the device. In most cases, the getConnectedNodes()
method will return back a single node, but to make this future proof we iterate
over all the connected nodes to handle cases where the user may be signed in to
multiple devices.

Once we have the list, we send a message to each of the nodes using Wearable.
MessageApi.sendMessage that makes reference to GoogleApiClient, the current
node ID, the path used to determine the type of message being sent, and finally the
message payload, which is defined as a byte array. We use the await property to
block our wearable UI until the task completes.

Once the message has been sent, we clear our mSendMessageInput EditText field
to allow the user to continue to enter additional text. Any errors encountered will
be caught in the catch (Exception e) block. Then we call the start method of our
thread and display a message to our Log window to denote that the message has
been sent successfully.

Sending and Syncing Data

[104]

Receiving messages using MessageAPI
In our previous section, we looked at how we can use MessageAPI to send messages
to the Android wearable. In this section, we will take a look at how we can retrieve
this message and display it on our Android wearable device:

1.	 From the Project Navigator window, open the WearActivity.java file:

2.	 Next, add the following highlighted import statements in the
WearActivity.java file:
import android.app.Activity;
import android.os.Bundle;
import android.support.wearable.view.WatchViewStub;
import android.widget.TextView;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Handler;
import android.widget.ImageView;
import android.util.Log;
import com.google.android.gms.common.ConnectionResult;

Chapter 4

[105]

import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.Asset;
import com.google.android.gms.wearable.DataApi;
import com.google.android.gms.wearable.DataEvent;
import com.google.android.gms.wearable.DataEventBuffer;
import com.google.android.gms.wearable.DataMapItem;
import com.google.android.gms.wearable.MessageApi;
import com.google.android.gms.wearable.MessageEvent;
import com.google.android.gms.wearable.Wearable;
import java.io.InputStream;

3.	 Now, modify the WearActivity class as shown in the following code:
public class WearActivity extends Activity {

 private TextView mTextView;
 private GoogleApiClient mGoogleApiClient;
 private static final String LOG_TAG = "WearActivity";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear);
 final WatchViewStub stub = (WatchViewStub)
 findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new
 WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub
 stub) {
 mTextView = (TextView)
 stub.findViewById(R.id.received_message_input);
 }
 });

 // Establish our connection
 initGoogleApiClient();
 }

Sending and Syncing Data

[106]

4.	 Here, we need to create a new initGoogleApiClient method and add the
code that will be called when the watch is instantiated. This will initialize the
watch area, as follows:
// establishes a connection between the mobile and wearable
private void initGoogleApiClient()
{
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new
 GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.d(LOG_TAG, "onConnected: " +
 connectionHint);
 Wearable.MessageApi.addListener(
 mGoogleApiClient, messageListener);
 }
 @Override
 public void onConnectionSuspended(int cause) {
 Log.d(LOG_TAG, "onConnectionSuspended:
 " + cause);
 }
 })
 .addOnConnectionFailedListener(new
 GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
 result) {
 Log.d(LOG_TAG, "onConnectionFailed: "
 + result);
 }
 })
 .addApi(Wearable.API)
 .build();

 mGoogleApiClient.connect();
}

Chapter 4

[107]

5.	 Next, we need to create an onMessageReceived new method and add the
following code that will be called when the wearable device receives the
message from the handheld device:
MessageApi.MessageListener messageListener = new MessageApi.
MessageListener() {
 @Override
 public void onMessageReceived(final MessageEvent
 messageEvent) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (messageEvent.getPath().
 equalsIgnoreCase("/message")) {
 Log.i(LOG_TAG, new
 String(messageEvent.getData()));
 mTextView.setText(new
 String(messageEvent.getData()));
 }
 }
 });
 }
 };

6.	 Now, we need to create the onStop method that will handle clean up and
destruction of our GoogleApiClient connections:
@Override
protected void onStop() {
 super.onStop();
 mGoogleApiClient.disconnect();
}

7.	 Next, we need to create the onDestroy method that will handle clean up and
destruction of our GoogleApiClient connections.
 @Override
 protected void onDestroy() {
 super.onDestroy();
 mGoogleApiClient.disconnect();
 }

Sending and Syncing Data

[108]

8.	 In this step, we need to install the app on both Android handheld device and
Android wearable device so that messages can be communicated between
them. Choose the mobile configuration from the drop-down menu as shown
in the following screenshot:

9.	 Then, install the app on our Android wearable device by following
the same steps that we did for our Android handheld device, but choose
the wear configuration from the drop-down menu as shown in the
preceding screenshot.

In the preceding code snippet, we start by getting a reference to our mTextView
object that will be used to display the message received from the Android
handheld device. Next, we make a call to our initGoogleApiClient method that
is responsible for establishing connection between our Android handheld and
wearable device. Once the GoogleApiClient object has established a successful
connection, the onConnected method is called where we set up a listener service
on our MessageApi that will capture any messages our wearable class receives,
and these will be handled by the onMessageReceived method.

In our next step, we create a new messageListener object that inherits from the
MessageApi.MessageListener class that includes a onMessageReceived method.
This method will be responsible for receiving messages sent from the Android
handheld device and accepts a messageEvent variable that contains the message
data object.

Chapter 4

[109]

The runOnUiThread method is called only when a message data object has
been received. Then we use getPath to get the path on which the message is
being delivered and compare this to the path that we declared within our mobile
activity class.

Next, we use the getData method to get the data passed by the message and
then display this message on our Log window to denote that the message has
been received successfully. This is done before assigning the contents of the message
to our mTextView object, so that this can be displayed within the watch area. Next,
we create the onStop() method that will be called when the activity is no longer
visible to the user, or the GoogleApiClient variable has been destroyed by the
onDestroy method.

Finally, we can begin to compile, build, and run our application. Simply press
CMD + F9 and choose your AVD or Android wearable device from the list of
available devices as shown in the following screenshot:

Sending and Syncing Data

[110]

Once the wearable app has been installed on the Android handheld and Android
wearable devices, you should see your entered message appear within the watch
area, as follows:

As you can see, using MessageApi to send messages is quite simple. In our next
section, we will take a look at how we can use DataApi to send an image from the
handheld device to the Android wearable.

Chapter 4

[111]

Transferring image data to the Android
wearable
In our previous section, we looked at how we can send messages from our Android
handheld device and display this information within our wearable watch area. In
this section, we will take a look at the steps involved in downloading an image from
the Internet, compressing the file contents in memory before sending this to the
Android wearable, and displaying this within the watch area:

1.	 From the Project Navigator window, open the MobileActivity.java file.
2.	 Next, modify the onCreate(Bundle savedInstanceState) method and

enter the following highlighted code sections:
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_mobile);

 // Get a pointer to our buttons and textField
 final Button mSendMessageButton = (Button)
 findViewById(R.id.send_message_button);
 final Button mSendImageButton = (Button)
 findViewById(R.id.send_image_button);
 final EditText mSendMessageInput = (EditText)
 findViewById(R.id.send_message_input);

 // Set up our hint message for our Text Field
 mSendMessageInput.setHint(R.string.send_message_text);

3.	 Now, we need to set up an onClickListener method in our
sendImageButton as shown in the following code snippet:

// Set up our send image button onClick method handler
mSendImageButton.setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Create a new thread to send the downloaded image
 Thread thread = new Thread(new Runnable(){
 @Override

Sending and Syncing Data

[112]

 public void run()
 {
 // Declare our image variable to hold the URL
 String imageName =
 "http://www.androidcentral.com/sites/"
 + "androidcentral.com/files/styles/w550h500/public/" +
 "wallpapers/batdroid-blj.jpg";
 try {
 PutDataMapRequest request =
 PutDataMapRequest.create("/image");
 DataMap map = request.getDataMap();
 URL url = new URL(imageName);
 Bitmap bmp =
 BitmapFactory.decodeStream(url.openConnection().
 getInputStream());
 final ByteArrayOutputStream byteStream = new
 ByteArrayOutputStream();
 bmp.compress(Bitmap.CompressFormat.PNG, 100,
 byteStream);

 // Creates an image asset from the chosen image
 Asset asset =
 Asset.createFromBytes(byteStream.toByteArray());
 Random randomGenerator = new Random();
 int randomInt = randomGenerator.nextInt(1000);
 map.putInt("Integer", randomInt);
 map.putAsset("androidImage", asset);
 Wearable.DataApi.putDataItem(mGoogleApiClient,
 request.asPutDataRequest());
 }
 catch (Exception e) {
 Log.e(LOG_TAG, e.getMessage());
 }
 });
 // Starts our Thread
 thread.start();
 Log.d(LOG_TAG, "Image has been sent");
}
});
}

Chapter 4

[113]

In the preceding code snippet, we started by declaring our mSendImageButton
object variable that will be responsible for downloading the image from the Internet
and sending this to the Android wearable device. Next, we proceed to set up a
setOnClickListener object that will handle and respond to the events when the
user has tapped on the Send an Image to Android Wear button. In our next step,
we create a new thread object that inherits from the Thread class that includes
a run method that will be used to execute the active class. Then we declare an
imageName string variable that will be used to hold the path for our image that
will be downloaded.

Next, we create an object variable request that references the PutDataMapRequest
object that will be used to hold our image data. Then we call the getDataMap method
to our request object to get the data map, so that we can proceed to assign values to
this object that will be stored in the map object variable. In our next step, we declare
a url object that uses the URL class that converts the imageName string into a URL
object. Then we use BitmapFactory.decodeStream to connect to the Internet,
return the object data, and assign the contents to our bmp object variable, then
declare our byteStream object that creates ByteArrayOutputStream with a
default size of 32 bytes.

If byteStream sends more than 32 bytes, the underlying byte
array will automatically expand.

In our next step, we write a compressed version of the bitmap to the specified bitmap
stream, compress for maximum quality, and then pass our byteStream output
stream to write the compressed data.

The path string is a unique identifier for the data item that
allows you to access it from either side of the connection.
The path must begin with a forward slash.

Next, we need to create an asset image asset object variable from the compressed
image data and convert the byteStream data into a byte array. Assets are objects
that are used to send binary blobs of data, such as images. When you send blob data
to the Android wearable, the system will automatically take care of the transfer for
you, and conserve bandwidth by caching large assets to avoid retransmission.

Sending and Syncing Data

[114]

The term blob is essentially a collection of binary data that is
stored as a single entity and can be images, audio, or other
multimedia objects.

Then we instantiate our Random class that constructs a random number generator
with an initial state that is unlikely to be duplicated by a subsequent instantiation,
and then assign this to our randomGenerator variable.

After this, declare a randomInt variable and generate a random number from one to
one thousand. Then we create an Integer data item, and assign the random value
to this. This is to ensure that we can send the image multiple times to the Android
wearable device. Next, we proceed to do the same for our androidImage data item,
and assign the created image asset data. Finally, we call the DataApi.putDataItem
method, which adds the image data to the Android wearable network and sends the
data to the Android wearable.

Receiving image data using DataApi
In the previous section, we looked at how we can use the DataApi.putDataItem
method to send a binary image data to the Android wearable. In this section, we will
be taking a look at how we can retrieve the image and display it within our Android
wearable watch area:

1.	 From the Project Navigator window, open the WearActivity.java file.
2.	 Next, modify the WearActivity class and add the following code snippet:

public class WearActivity extends Activity {
 private TextView mTextView;
 private ImageView imageView;
 private GoogleApiClient mGoogleApiClient;
 private Bitmap imageBitmap;
 private final Handler imageHandler = new
 Handler();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear);
 final WatchViewStub stub = (WatchViewStub)

Chapter 4

[115]

 findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new
 WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub
 stub) {
 mTextView = (TextView)
 stub.findViewById(R.id.received_message_input);
 imageView = (ImageView)
 stub.findViewById(R.id.received_image_input);
 }
 });

 // Establish our connection
 initGoogleApiClient();
}

3.	 Then, we modify the initGoogleApiClient method and add the following
highlighted code:
// establishes a connection between the mobile and wearable
private void initGoogleApiClient()
{
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new
 GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle connectionHint) {
 Log.d(LOG_TAG, "onConnected: " +
 connectionHint);
 Wearable.DataApi.addListener(
 mGoogleApiClient, onDataChangedListener);
 Wearable.MessageApi.addListener(
 mGoogleApiClient, messageListener);
 }
 @Override
 public void onConnectionSuspended(int cause) {
 Log.d(LOG_TAG, "onConnectionSuspended:
 " + cause);

Sending and Syncing Data

[116]

 }
 })
 .addOnConnectionFailedListener(new
 GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
 result) {
 Log.d(LOG_TAG, "onConnectionFailed: "
 + result);
 }
 })
 .addApi(Wearable.API)
 .build();

 mGoogleApiClient.connect();
}

4.	 Next, we create a onDataChanged(DataEventBuffer dataEvents) listener
method and add the following code that will be called when the wearable
device receives the image from the handheld device:
public DataApi.DataListener onDataChangedListener = new DataApi.
DataListener() {
 @Override
 public void onDataChanged(DataEventBuffer dataEvents){
 for (DataEvent event : dataEvents) {
 if (event.getType() ==
 DataEvent.TYPE_CHANGED &&
 event.getDataItem().getUri().getPath()
 .equals("/image")) {
 DataMapItem dataMapItem =
 DataMapItem.fromDataItem(
 event.getDataItem());
 Asset imageAsset =
 dataMapItem.getDataMap().
 getAsset("androidImage");

 imageBitmap =
 loadBitmapFromAsset(imageAsset);
 // Process our received image bitmap

Chapter 4

[117]

 imageHandler.post(new Runnable() {
 @Override
 public void run() {
 if (imageView != null) {
 Log.d(LOG_TAG, "Image
 received");
 imageView.setImageBitmap(imageBitmap);
 }
 }
 });
 }
 }
 }
};

5.	 Now, we need to create a new loadBitmapFromAsset (Asset asset)
method and add the code that will load and decode the bitmap asset
information, as shown in the following code snippet:

public Bitmap loadBitmapFromAsset(Asset asset) {
 if (asset == null) {
 throw new IllegalArgumentException("Asset cannot
 be empty");
 }
 // Convert asset into a file descriptor and block
 // until it's ready
 InputStream assetInputStream =
 Wearable.DataApi.getFdForAsset(mGoogleApiClient,
 asset).await().getInputStream();

 if (assetInputStream == null) {
 Log.w("WearActivity", "Requested an unknown
 Asset.");
 return null;
 }
 // Decode the stream into a bitmap
 return BitmapFactory.decodeStream(assetInputStream);
}

Sending and Syncing Data

[118]

In the preceding code snippets, we start creating additional variables for
imageView, imageBitmap, and imageHandler. The imageView will be used to
output the contents of our image and display this to the Android wearable device.
The imageBitmap will be responsible for holding the downloaded and decoded
image, once it has been received by imageHandler. Next, we get a reference to our
imageView object that will be used to display the image received from the Android
handheld device. Then, we make a call to our initGoogleApiClient method that
is responsible for establishing the connection between our Android handheld and
wearable devices. Once the GoogleApiClient object has established a successful
connection, the onConnected method is called where we set up a listener service on
DataApi that will capture any images our wearable class receives, and these will be
handled by the onDataChangedListener() method.

In our next step, we create a new onDataChangedListener() object that inherits
from the DataApi.DataListener class that includes a onDataChanged method that
will be responsible for receiving any images that are sent from the Android handheld
device and accepts a dataEvents variable that contains the contents of our image
data object. Next, we use the DataEvent class to get a list of all data objects that are
currently being sent to the Android wearable device.

Then we use the getType property to get the type of event, and perform a
comparison to check if there has been a change since the last time. We use the
getPath property of the getDataItem property of the DataEvent event object to
check that we are processing the correct image path value.

Next, we use the DataMapItem class to extract the contents of our image object from
the event object, since we have obtained the correct data item path. Then we use
the Asset class and use the getAsset method to get the image object data, which
we pass to our loadBitmapFromAsset method to decode the contents of the image
into a bitmap object and return the contents back to the calling method. We use the
await property on our getFdForAsset method to block our wearable UI until the
task completes. The imageHandler method is called only when an image object has
been received, and then it uses the setImageBitmap method of our imageView object
so that this can be displayed within the watch area, before finally destroying the
connection to our GoogleApiClient within the onDestroy method.

Chapter 4

[119]

Finally, we can compile, build, and run our application. Simply press CMD + F9 and
choose your AVD or Android handheld device from the list of Android emulators.
Once the mobile app has been launched, you should see the user interface displayed,
as shown in the following screenshot:

You must ensure that you install the app on both your Android
handheld device and the Android wearable device to ensure that
everything works as expected.

The preceding screenshot shows the workflow between the Android handheld
device and the Android wearable device when an image has been sent after the
user taps the Send an image to Android Wear button.

Sending and Syncing Data

[120]

Summary
In this chapter, we learned about three new APIs, DataAPI, NodeAPI, and
MessageAPIs, and how we can use them and their associated methods to
transmit information between the handheld mobile and the wearable.

If, for whatever reason, the connected wearable node gets disconnected
from the paired handheld device, the DataApi class is smart enough to
try sending again automatically once the connection is reestablished.

We learned about GoogleApiClient that is responsible for establishing and
handling the connection between the Android handheld and the wearable device.
Then we moved on to learn about the NodeApi class, and how we can use this to
obtain a list of all nodes that are currently connected to the wearable device. Next,
we learned about MessageApi and how we can use the sendMessage() method to
send a message to the Android wearable.

Then we got acquainted with the DataApi class, and how we can use the
DataListener() method to check for any image data being sent from the
Android handheld to the wearable.

In the next chapter, we will learn how we can build effective and interactive content
for the Android TV platform. We will get acquainted with the Android Leanback
support library to see how we can design and customize our own user interfaces.

[121]

Working with Google Glass
This chapter will provide you with the background and understanding of how you
can effectively build applications that communicate directly with Google Glass and
chances are, either you are most likely a Google Glass owner or you simply don't
own one currently, but are intrigued by it. Google Glass is basically a headset that
has a visual display on one side, making it more like a monocle, except that it has an
optics pod display. The main input controls for Glass are voice, gestures, and touch,
so when you begin building applications for Google Glass, you can use one or more
of these forms of input.

Another reason is that the display is much smaller than handheld devices; you have
less space to work with to show information, as a result of which user interfaces
tend to be plain and simple. Google Glass comes with several built-in features, some
of which allow users to take a picture by issuing a voice command or pressing the
onboard shutter button, or winking using your right eye. You can also record videos
by holding the shutter button for three seconds and then using the touchpad to
extend the video timeframe to be more than 10 seconds. You also have the ability
to activate speech recognition and voice dictation, as well as performing Google
searches using your voice.

In this chapter, we will also learn how we can incorporate and make use of Google
Glass voice capabilities to respond to and receive voice input from the wearable.
At the end of the chapter, we will look at how we can incorporate and access the
Glass camera to capture and save an image, and we will cover the Google Glassware
principle design guidelines.

The following topics are covered in this chapter:

•	 Installing the Glass Development Kit preview
•	 Installing the Google USB drivers for Windows
•	 Creating and building a Google Glass application

Working with Google Glass

[122]

•	 Receiving voice input with Google Glass
•	 Accessing camera with Google Glass
•	 Incorporating the Google Maps API with Google Glass
•	 Google Glassware principle design guidelines

Installing the Glass Development Kit
preview
Before we can start developing applications for the Google Glass platform, we will
need to look at how to install the Google Glass Development Kit SDK:

1.	 Launch Android SDK Manager using SDK Manager in Android Studio.
2.	 Click on the SDK Platform option and select the Glass Development Kit

Preview packages that are located under the Android 4.4.2 (API 19) section
to install them:

Chapter 5

[123]

The Google Glass Development Kit (GDK) is currently in
preview and is only available within Android 4.4.2 (API 19) SDK.

3.	 Next, accept the license information for Android SDK License and Google
Gdk License by selecting the Accept License option.

4.	 Then, click on the Install button to begin installing the packages, as shown in
the following screenshot:

You will notice that the Glass Development Kit is still in developer preview
and as such, at the time of writing, there is currently no emulator provided to test
your apps, so you will need to have a Google Glassware device to deploy and test
your apps.

Working with Google Glass

[124]

If you do not own a Google Glass, but hope to learn how to develop for
Google Glass, you can use an Android phone or tablet to test your Google
Glass applications. Most of the user interfaces you create for Google Glass
can be displayed normally on an Android phone or tablet, except that the
voice trigger action provided by Google Glass will not work for phone
and tablet.
Alternatively, there is a Google Glassware emulator by Gerwin Sturm
called the Mirror API emulator. This works as a server-side API that
means it doesn't run on Glass itself, but on your server and it's your
server that interacts with Glass. This can act as a good idea of what
the output will be like when it is run on the real device. This can be
downloaded from https://github.com/Scarygami/mirror-api.

Installing the Google USB drivers for
Windows
In this section, we will look at how to install the Android device drivers for Google
Glass on the Windows platform in order to perform debugging with your Google
devices. Android device drivers can either be installed from the Android SDK
Google USB drivers or using the software that comes from the device manufacturer.

If you're developing Google Glass apps running on the Mac OS X or
Linux platforms, you do not need to install a USB driver. On these
platforms, you can use the Android File Transfer Manager tool.

To install the Google USB drivers, follow these simple steps:

1.	 Launch Android SDK Manager using SDK Manager in Android Studio.
2.	 Select and click on the Google USB Driver package, which is located under

the Extras section, to install it:

https://github.com/Scarygami/mirror-api

Chapter 5

[125]

3.	 Next, click on the install button to begin installing Google USB Driver.
Once you have installed the Google USB drivers for Google Glass, you will
need to make a modification to the android_winusb.inf file, otherwise
when you want to deploy your application's APK file on the device for
debugging purposes, your device won't be listed, even though you have
installed the drivers correctly.

Working with Google Glass

[126]

4.	 Open the android_winusb.inf file that is located at android_SDK_folder
under \sdk\extras\google\usb_driver, as shown in the following
screenshot:

5.	 With the android_winusb.inf file displayed, we need to add the
following [Google.NTx86] and [Google.NTamd64] sections as in
the following snippet:
[Google.NTx86]

;GoogleGlass
%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_4E11&REV_0216
%CompositeAdbInterface% = USB_Install, USB\VID_18D1&PID_4E11&MI_01
%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_4E11&REV_0216
%CompositeAdbInterface% = USB_Install, USB\VID_18D1&PID_4E12&MI_01

[Google.NTamd64]

Chapter 5

[127]

;GoogleGlass
%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_4E11&REV_0216
%CompositeAdbInterface% = USB_Install, USB\VID_18D1&PID_4E11&MI_01
%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_4E11&REV_0216
%CompositeAdbInterface% = USB_Install, USB\VID_18D1&PID_4E12&MI_01

6.	 Then launch the Device Manager application, right-click on your Google
Glass device, and click to install the drivers. When you are prompted to
browse for a location, select the android_winusb.inf parent folder, and
follow the instructions presented.

If you experience any issues with installing the Google USB driver,
it is worthwhile to check out the documentation located at http://
developer.android.com/sdk/win-usb.html.

Now that we have installed our Google Glass Development Kit and Android SDK,
we can now start to build our Google Glass application for this chapter.

Creating and building a Google Glass
application
In this section, we will look at how to create a native Google Glass wearable
application that will enable us to communicate with our wearable device, so that we
can create custom voice messages as well as access the Google Glass camera to take a
photo and save the image to our wearable device.

Firstly, create a new project in Android Studio by following these simple steps:

1.	 Launch Android Studio, and then click on the File | New Project
menu option.

2.	 Next, enter HelloGoogleGlass for the Application name field.
3.	 Then, provide the name for the Company Domain field.

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html

Working with Google Glass

[128]

4.	 Next, choose Project location where you would like to save your
application code:

5.	 Finally, click on the Next button to proceed to the next step.
Next, we will need to specify the form factors for the Glass wearable device
that our application will run on. On this screen, we will need to choose the
minimum SDK version for the Glass wearable device.

6.	 Click on the Glass option and choose Glass Development Kit Preview
(Google Inc.)(API 19) for the Minimum SDK option:

Chapter 5

[129]

7.	 Click on the Next button to proceed to the next step.
8.	 From the Add an activity to Glass screen, choose the Immersion Activity

option from the list of activities shown, and then click on the Next button
to proceed to the next step:

Working with Google Glass

[130]

An immersion activity is the same as an Android activity. The name
immersion is one that takes full control of the device. For example,
when the user performs a swipe down gesture within Google Glass,
the immersion activity will be removed from the Glass timeline. This
type of behavior is performed in a similar way to those in the apps of
your phone.

Next, we need to customize the properties for Immersion Activity so that it
can be used by our application. Here we will need to specify the name of our
activity as well as its title.

9.	 From the Customize the Activity screen, enter MainActivity for Activity
Name and Hello Glass Example for Activity Title as shown in the
following screenshot:

10.	 Next, click on the Finish button and the wizard will generate your project
and after a few moments, the Android Studio window will appear with
your project displayed in it.

Chapter 5

[131]

Setting the theme for the Google Glass app
The next thing that we need to do is set up our application so that it doesn't take up
too much of our Glass screen with the name of our immersion activity title bar, and
certainly we don't want our screen to be gray with a black font. This is quite simple
to fix.

From the Project Navigator window, open styles.xml that is located in the res |
values folder, and modify this file by adding the following highlighted code:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="AppTheme" parent="android:Theme.DeviceDefault"></style>
</resources>

As you can see, we just need to switch the theme and let the Google Glass OS
take care of it for us. All we did here is modified android:Theme.Holo.Light
to android:Theme.DeviceDefault and this will automatically take care of any
application layout and colors for us, using the default Glass theme.

Configuring the project to run on Google
Glass
Before we can actually run the application on our Google Glassware, we must first
ensure that we have enabled our device for testing and we need to configure our
project to handle installation of our app on our Google Glass wearable:

1.	 On your Glassware device, go to Settings | Device Info | Turn on debug.
2.	 Next, plug your Google Glass into your computer's USB port. You will hear

a dinging sound coming from your Google Glass to let you know that it has
connected properly.

Working with Google Glass

[132]

3.	 Now, we need to configure our app so that we can install this on our Google
Glassware. Choose the app configuration from the drop-down menu, and
choose the Edit Configurations… menu option as shown in the following
screenshot:

4.	 From the Run/Debug Configurations dialog, choose Deploy default APK
under the Package section.

5.	 Under the Activity section, choose the Launch option and click on the …
button to display the Select Activity Class dialog.

6.	 Next, choose the MainActivity class and then click on the OK button
as follows:

Chapter 5

[133]

7.	 Under the Target Device section, choose the USB device and click on the OK
button to dismiss the Run/Debug Configurations dialog as shown in this
screenshot:

Working with Google Glass

[134]

8.	 Upon clicking on the OK button, this will return you to the code editor
window. Now that we have successfully configured our project to work
with our Google Glass wearable device, we can start building additional
functionality that will allow us to incorporate voice input so that it can
launch our voice and camera activity classes.

Creating the custom menu resource file
In this section, we will proceed to create our custom menu resource file that will be
used to store our custom voice keywords in order to launch the app handsfree:

1.	 From the Project Navigator window, expand the app section, then select and
expand the res section.

2.	 Next, right-click and choose the New | Android resource file menu option,
as shown in the following screenshot:

Next, we need to customize the properties for our resource file so that it can
be used by our application, and display the menu items for use with our
Google Glass wearable. Here we will need to specify the filename for our
menu file and we need to specify Resource type, which tells Android that
we need this to be a menu resource file.

Chapter 5

[135]

3.	 Enter activity_menu for the File name field.
4.	 Next, choose the Menu item from the Resource type field drop-down menu,

as shown in this screenshot:

5.	 Next, click on the OK button to have the wizard generate the necessary files
for you. Once finished, this will open the Android Studio code editor with
your custom menu file displayed in it.
Our next step is to construct the menu items that will appear within our
Google Glass menu when launched.

6.	 From the Project Navigator window, open the activity_menu.xml file that
is located in the res | menu folder, and add the following code:
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/show_camera_item"
 android:title="@string/show_camera">
 </item>
 <item android:id="@+id/show_voice_item"
 android:title="@string/show_voice">
 </item>
 <item android:id="@+id/show_location_item"
 android:title="@string/show_location">
 </item>
</menu>

Working with Google Glass

[136]

In our next step, we need to add the associated menu item's text values
that will be displayed when our menu is displayed within Google Glass
when launched.

7.	 Again from the Project Navigator window, open the strings.xml file that is
located in the res | values folder, as shown in the following screenshot:

8.	 Next, add the following highlighted following code snippet:
<resources>
<string name="app_name">Hello Google Glass</string>
<string name="title_activity_main">Hello Glass
 Example</string>
<string name="hello_world">Hello world!</string>
<!-- Menu item strings for Google Glass -->
<string name="show_camera">Display the Camera</string>
<string name="show_location">Show my location</string>
<string name="show_voice">Voice Input</string>
</resources>

9.	 Now, we will need to change the currently declared OK Glass, show me a
demo command that is currently located within our voice_triggers.xml
file. Here we will need to include a contextual trigger that will be required to
launch our app.

10.	 From the Project Navigator window, open the voice_triggers.xml file,
which is located in the res | values folder, and modify this file by adding
the following snippet:
<trigger keyword="@string/app_name" />

Chapter 5

[137]

This changes the starting voice trigger to the same as your application's name; for
example, the trigger is now Hello Google Glass.

One thing to notice here is that we have replaced the command keyword
with keyword so that we can use a contextual trigger now, that is, OK
Glass followed by Hello Google Glass.

Configuring the AndroidManifests file
In our next section, we will need to make some additional changes to our
AndroidManifests file, which will allow our app to support custom voice controls,
as Google is pretty strict about which voice commands are allowed in approved
Glass apps, and all new commands must be approved prior to your app being
accepted on the Google Play Store:

1.	 From the Project Navigator window, select the manifests folder and then
double-click on the AndroidManifest.xml file to open it.

2.	 Next, under the manifest section of the app, we need to include all
permissions that will allow our app to support custom voice commands
as well store images taken using the camera.

3.	 Enter the following highlighted code:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="geniesoftstudios.com.hellogoogleglass" >
<!-- Permissions to test new, unlisted voice commands-->
<uses-permission
 android:name="com.google.android.glass.permission.
 DEVELOPMENT"/>
<!—- Permissions to store our captured images -->
<uses-permission
android:name="android.permission.CAMERA"/>
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<!-- For getting the current user location -->
<uses-permission android:name="android.permission.ACCESS_FINE_
LOCATION" />
<uses-permission android:name="android.permission.INTERNET" />
<application

Working with Google Glass

[138]

 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
<activity
 android:name=".MainActivity"
 android:icon="@drawable/ic_glass_logo"
 android:label="@string/title_activity_main" >
<intent-filter>
<action android:name="com.google.android.glass.action.VOICE_
TRIGGER" />
</intent-filter>
<meta-data
android:name="com.google.android.glass.VoiceTrigger"
 android:resource="@xml/voice_trigger" />
</activity>
<activity android:name=".CameraActivity"
 android:label="@string/app_name">
<intent-filter>
<action android:name="geniesoftstudios.com.hellogoogleglass.
CAMERA_ACTIVITY" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<activity android:name=".VoiceInputActivity"
 android:label="@string/app_name">
<intent-filter>
<action android:name="geniesoftstudios.com.hellogoogleglass.VOICE_
INPUT_ACTIVITY" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<activity android:name=".MapLocationActivity"
 android:label="@string/app_name">
<intent-filter>
<action android:name="geniesoftstudios.com.hellogoogleglass.MAP_
LOCATION_ACTIVITY" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
</manifest>

Chapter 5

[139]

In our next section, we will need to create a new layout resource file that will be
used to display our camera preview when the camera activity is launched. We will
be creating this file at this point and then begin adding the necessary code for our
camera activity as we proceed through this chapter.

Creating the custom camera layout
resource file
In this section, we will proceed to create our custom layout resource file that will be
responsible for ensuring that our camera preview section displays correctly within
our Google Glass wearable:

1.	 From the Project Navigator window, expand the app section and select and
expand the res | layout section.

2.	 Next, right-click and choose the New | Layout resource file menu option as
shown in the following screenshot:

Now, we need to customize the properties for our resource file so that it
can be used by our application. Here we will need to specify the filename
for our resource file and we need to specify the root element name for our
layout information.

Working with Google Glass

[140]

3.	 Enter camera_preview for the File name field.
4.	 Next, enter LinearLayout for the Root element field as shown in

this screenshot:

5.	 Now, click on the OK button to have the wizard generate the necessary files
for you. Once finished, this will open the Android Studio code editor with
your custom menu file displayed in it.
Our next step is to construct the layout for our custom camera preview,
so that when we launch the Glass camera functionality, our camera preview
will display correctly within the Glass screen.

6.	 From the Project Navigator window, open the camera_preview.xml file,
which is located in the res | layout section, and add the following code:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<SurfaceView
 android:id="@+id/camerapreview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>
</LinearLayout>

Chapter 5

[141]

In our next section, we will look at how we can communicate with our Google Glass
device by integrating custom voice actions and have our app launch the necessary
activity based on the spoken word.

Incorporating a voice input within
Google Glass
In this section, we will be looking at the steps involved in communicating with our
Google Glassware wearable device to handle voice input. This process is quite simple
and our next step is to write the code statements that will enable us to communicate
with our Glassware wearable and display the user's spoken text:

1.	 From the Project Navigator window, expand the app section and select and
expand the java section.

2.	 Next, right-click and choose the New | Java Class menu option:

Working with Google Glass

[142]

3.	 Then, enter VoiceInputActivity to be used as the name of our class and
click on the OK button:

Upon clicking the OK button, the Android Studio code editor will open with
our VoiceInputActivity class displayed. Our next step is to write the code
that will be responsible for handling our voice, capturing our spoken voice,
and displaying this within a card in the Glass user interface.

4.	 Open the VoiceInputActivity.java file that we just created.
5.	 Next, enter the following import statements::

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.speech.RecognizerIntent;
import android.view.View;
import com.google.android.glass.widget.CardBuilder;
import java.util.List;
import android.util.Log;

Chapter 5

[143]

6.	 Now, we need to modify the VoiceInputActivity class by modifying
the onCreate(Bundle savedInstanceState) method to include our
receiveVoiceInput method that will start intent to ask the user for
voice input when the class is instantiated, as shown in the following code:
public class VoiceInputActivity extends Activity {
 private final static int SPEECH_REQUEST = 0;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 receiveVoiceInput();

7.	 Then, we need to create a new receiveVoiceInput method that will be
called once the activity is instantiated and we listen for voice commands
and decide what to do, as shown in this code snippet:
 public void receiveVoiceInput() {
// Start the intent to ask the user for voice input
Intent intent = new
Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT,"Speak
 now");
 startActivityForResult(intent, SPEECH_REQUEST);
}

8.	 Next, we need to create an onActivityResult method that will be called
once the voice intent has returned and no further spoken text is detected.
This is shown in the following code:

 @Override
 protected void onActivityResult(int requestCode, int
 resultCode, Intent data) {
// When the voice input intent returns and is ok
if (requestCode == SPEECH_REQUEST && resultCode == RESULT_OK) {
// Get the text spoken
List<String> results = data.getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);
 String spokenText = results.get(0);
 Log.d("VoiceInputActivity","text: "
 + spokenText);
// Add the text to the view so the user knows we
// retrieved it correctly
 CardBuilder card = new CardBuilder(this,
 CardBuilder.Layout.TEXT);
 card.setText(spokenText);

Working with Google Glass

[144]

 View cardView = card.getView();
 setContentView(cardView);
 }
 super.onActivityResult(requestCode, resultCode, data);
 }
}

In the preceding code snippets, we started by adding our import statements that
will be responsible for allowing our app to communicate with Google Glass. We
added the speech.RecognizerIntent package to allow our class to receive speech
input once the intent has been instantiated and then start listening for speech activity
within our current class. The onActivityResult method is called when the speech
recognizing intent completes and a result code of RESULT_OK or RESULT_CANCEL
is returned.

In our next step, we check to see if we have received resultCode of RESULT_OK and
then we get the spoken text by using its EXTRA_RESULTS from RecognizerIntent.
Then we log the results to the debug window and update the Glass view to show
the new data received.

Accessing camera through Google Glass
In this section, we will be looking at how we can access the Google Glassware
camera, take a picture, and save it to the Glassware device:

1.	 From the Project Navigator window, expand the app section, then select and
expand the java section.

2.	 Next, right-click and choose the New | Java Class menu option.
3.	 Then, enter CameraActivity to be used as the name for our class and click

on the OK button.
Our next step is to write the code that will be responsible for handling and
capturing the image from the camera, and then saving this to the device's
local storage.

4.	 Open the CameraActivity.java file that we just created.
5.	 Next, enter the import statements:

import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Matrix;
import android.graphics.PixelFormat;
import android.hardware.Camera;

Chapter 5

[145]

import android.media.AudioManager;
import com.google.android.glass.media.Sounds;
import android.os.Bundle;
import android.os.Environment;
import android.view.KeyEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.util.Log;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;

6.	 Here, we need to modify the CameraActivity class by modifying the
onCreate(Bundle savedInstanceState) method that will initialize Camera
when the class is instantiated, as shown in the following code snippet:
public class CameraActivity extends Activity {
 private SurfaceHolder _surfaceHolder;
 private Camera _camera;
 private boolean _previewOn;
 Context _context = this;
 @Override
 public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 setContentView(R.layout.camera_preview);
// Set up the camera preview UI
getWindow().setFormat(PixelFormat.UNKNOWN);
 SurfaceView surfaceView = (SurfaceView)
 findViewById(R.id.camerapreview);
_surfaceHolder = surfaceView.getHolder();
_surfaceHolder.addCallback(new
SurfaceHolderCallback());

7.	 Now, we need to create a new onKeyDown method that will be called to start
the intent when the user has tapped the touchpad to take a photo as shown
in this code snippet:
 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event){
 switch (keyCode) {
 // Google Glass TouchPad Tap
 case KeyEvent.KEYCODE_DPAD_CENTER:
 case KeyEvent.KEYCODE_ENTER: {
 Log.d("CameraActivity", "Tap.");

Working with Google Glass

[146]

 AudioManager audio =
 (AudioManager)getSystemService(
 Context.AUDIO_SERVICE);
 audio.playSoundEffect(Sounds.SUCCESS);

 // Take the picture
 _camera.takePicture(null, null,
 new SavePicture());
 return true;
 }
 default: {
 return super.onKeyDown(keyCode, event);
 }
 }
 }

8.	 Next, we need to create a new getFilename method that will be called
once the onPictureTaken callback method has completed, as shown in
the following code:
// Create the image filename with the current timestamp
private String getFilename(boolean isThumbnail) {
 Log.d("CameraActivity", "Saving picture...");
 SimpleDateFormat sdf = new
 SimpleDateFormat("yyyyMMdd_HHmmss_SSS");

 // Build the image filename
 StringBuilder imageFilename = new StringBuilder();
 imageFilename.append(sdf.format(new Date()));
 if (isThumbnail) imageFilename.append("_tn");
 imageFilename.append(".jpg");

 // Return the full path to the image
 return
 Environment.getExternalStoragePublicDirectory
 (Environment.DIRECTORY_DCIM) +
 File.separator + "Camera" +
 File.separator + imageFilename;
}

9.	 Here, we need to create a new savePicture method that will be called once
the onPictureTaken callback method has returned, as follows:
// Write the image to local storage
public void savePicture(Bitmap image, String filename) throws
IOException {

Chapter 5

[147]

 FileOutputStream fos = null;
 try {
 fos = new FileOutputStream(filename);
 image.compress(Bitmap.CompressFormat.JPEG, 100, fos);
 Log.d("CameraActivity", "Picture saved.");
 }
 catch (IOException e) {
 e.printStackTrace();
 throw(e);
 }
 finally {
 fos.close();
 }
}

10.	 Now, we need to create a new surfaceChanged method that will be called
once the SurfaceHolder callback method has returned as shown in this
code snippet:
// Handling of the camera preview
private class SurfaceHolderCallback implements SurfaceHolder.
Callback {
 @Override
 public void surfaceChanged(SurfaceHolder holder, int
 format, int width, int height) {
 if (null != _camera) {
 try {
 Camera.Parameters params =
 _camera.getParameters();
 params.setPreviewFpsRange(5000, 5000);
 _camera.setParameters(params);
 // Start the preview
 _camera.setPreviewDisplay(_surfaceHolder);
 _camera.startPreview();
 _previewOn = true;
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 _camera = Camera.open();
 }

Working with Google Glass

[148]

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 if (_previewOn) {
 // Stop the preview and release the camera
 _camera.stopPreview();
 _camera.release();
 }
 }
}

11.	 Next, we need to create a new method to handle the onPictureTaken
callback method, as shown in the following code:
// Callback that is called when the picture is taken
class SavePicture implements Camera.PictureCallback {
 @Override
 public void onPictureTaken(byte[] bytes, Camera camera)
 {
 Log.d("CameraActivity", "Picture taken.");
 Bitmap image =
 BitmapFactory.decodeByteArray(bytes,
 0, bytes.length);
 try {
 // Save the image
 String imageFilename = getFilename(false);
 savePicture(image, imageFilename);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

In the preceding code snippets, we started by adding the import statements that
will be responsible for allowing our app to communicate with Google Glass. Then
we proceeded to create our private variables for SurfaceHolder and Camera as
these will be responsible for displaying the camera preview within the Google Glass'
screen window.

Then we call the setContentView method for our activity to use our custom
camera_preview layout file once the activity is created, and then start setting up
the callback methods for our camera preview UI. The onKeyDown method is called
once the user has successfully tapped on TouchPad within the Google Glass control
options, and then a sound effect notifying success is played through Glass to notify
the user that the camera successfully took the picture.

Chapter 5

[149]

The onPictureTaken callback method is called and this sends the picture as a byte
array through which we use the BitmapFactory.decodeByteArray method to
convert the bytes into a bitmap image. It is worth mentioning that in terms of your
code, you shouldn't attempt to access the bytes of captured data, since this may not
be immediately available.

In our next step, we call the getFilename method to build the filename of the image
that will be saved to external storage. This filename will contain the current date and
time appended to the end of the filename. Once we have the constructed filename,
we proceed to call the savePicture method and to this, we pass in the image data
and filename, which then writes a compressed version of the bitmap to the specified
bitmap stream and compresses for maximum quality.

Incorporating the Google Maps API with
Google Glass
In this section, we will be looking at how we can use the Google Maps API to obtain
users' current location and address details, and plot their position on the map as a
placeholder marker:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

2.	 Next, right-click and choose the New | Java Class menu option.
3.	 Then, enter MapLocationActivity to be used as the name of our class

and click on the OK button.
Our next step is to write the code that will be responsible for getting
the current user's location and address information, and then use the
Google Maps API to pass the derived latitude and longitude coordinates
to create a map image in memory, which we will display to the Google
Glass content view.

4.	 Open the MapLocationActivity.java file that we have just created.
5.	 Next, enter the import statements:

import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.List;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.location.Address;

Working with Google Glass

[150]

import android.location.Criteria;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.app.Activity;
import android.content.Context;
import android.view.View;
import android.view.WindowManager;
import android.util.Log;
import com.google.android.glass.widget.CardBuilder;

6.	 Now, we need to modify the MapLocationActivity class by modifying the
onCreate(Bundle savedInstanceState) method to start retrieving our
current location when the class is instantiated, as shown in this code snippet:
public class MapLocationActivity extends Activity implements
LocationListener{
 public LocationManager mLocationManager;
 private CardBuilder card;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Add the text to the view so the user knows
 // we retrieved it correctly.
 card = new CardBuilder(this, CardBuilder.Layout.TEXT);
 card.setText("Getting your location...");
 View cardView = card.getView();
 setContentView(cardView);

 // Request a static location from the location manager
 mLocationManager = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 // Set up a criteria object to get the location data,
 // using the GPS provider on the handheld device.
 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setAltitudeRequired(true);

Chapter 5

[151]

 List<String> providers =
 mLocationManager.getProviders(criteria, true);

 // Asks the provider to send a location update
 // every 10 seconds.
 for (String provider : providers) {
 mLocationManager.requestLocationUpdates(provider,
10000, 10, this);
 }
 getWindow().addFlags(WindowManager.LayoutParams.
 FLAG_KEEP_SCREEN_ON);
 }
}

7.	 Here, we need to create an onLocationChanged method that will be called
each time LocationManager determines that the user's location has changed,
as shown in the following code:
// Method to show the current Latitude and Longitude
// to the user.
@Override
public void onLocationChanged(Location location) {
 // Get the Latitude and Longitude information
 String mLatitude =
 String.valueOf(location.getLatitude());
 String mLongitude =
 String.valueOf(location.getLongitude());
 // Attempt to get address information from the
 // static location object.
 Geocoder geocoder = new Geocoder(this);
 try {
 List<Address> addresses =
 geocoder.getFromLocation(location.getLatitude(),
 location.getLongitude(), 1);
 // Check to see if we have successfully
 // returned the address information.
 if (addresses.size() > 0) {
 Address mAddress = addresses.get(0);
 String mAddressInfo = "";
 for(int i = 0;
 i < mAddress.getMaxAddressLineIndex(); i++) {
 mAddressInfo += mAddress.getAddressLine(i)
 + " ";
 }
 // Display the address information within our Card
 card.setFootnote(mAddressInfo);

Working with Google Glass

[152]

 }
 } catch (IOException e) {
 Log.e("LocationActivity", "Geocoder error", e);
 }

 // Then, call our google maps URL to return the map
 // for the latitude and longitude coordinates
 new LocationMapImageTask().execute(
 "http://maps.googleapis.com/maps/api/staticmap?"
 + "zoom=10&size=640x360&markers=color:green|" +
 mLatitude + "," + mLongitude);

 View cardView = card.getView();
 setContentView(cardView);
 }

8.	 Next, we need to create a new doInBackground method that will be called
once the LocationMapImageTask callback method has returned from
downloading the image asynchronously, as shown in this code:
// Private class to handle loading the Map and returning
// back an Bitmap image object.
private class LocationMapImageTask extends
 AsyncTask<String, Void, Bitmap> {

 @Override
 protected Bitmap doInBackground(String... stringURL) {
 Bitmap bmp = null;
 try {
 URL url = new URL(stringURL[0]);
 HttpURLConnection conn = (HttpURLConnection)
 url.openConnection();
 conn.setDoInput(true);
 conn.connect();
 InputStream inputStream = conn.getInputStream();
 BitmapFactory.Options options =
 new BitmapFactory.Options();
 bmp = BitmapFactory.decodeStream(inputStream,
 null, options);
 }
 catch (Exception e) {
 Log.e("LocationActivity",
 "LocationMapImageTask", e);
 }
 // Return the map as a bitmap image
 return bmp;

Chapter 5

[153]

 }
 // After we have successfully executed our
 // doInBackground method we need to display our map image
 // to the card.
 @Override
 protected void onPostExecute (Bitmap result) {
 // Add the map image to our Google Glass card
 card.addImage(result);
 View cardView = card.getView();
 setContentView(cardView);
 super.onPostExecute(result);
 }
}

9.	 Now, as shown in the following code snippet, we need to create a new
method to handle the LocationListener callbacks that will be used to
determine when the location provider information has been enabled,
disabled, or when the status changes:
@Override
public void onProviderDisabled(String arg0) {
 // Called when the provider is disabled by the user.
}
@Override
public void onProviderEnabled(String arg0) {
 // Called when the provider is enabled by the user.
}
@Override
public void onStatusChanged(String
 arg0,int arg1,Bundle arg2){
 // Called when the provider status changes.
}

In the preceding code snippets, we started by adding our import statements that
will be responsible for allowing our app to communicate with Google Glass and
obtain the user's current location information. Then we proceed to create our
mLocationManager object that will be used to hold the location data and make a
call to get a list of location providers. Then we call the requestLocationUpdates
method to ask the provider to send a location update every ten seconds. We specify
a value of ten meters for the third parameter that tells LocationListener to update
only when the location has changed and also when the number of milliseconds
specified by our second parameter of 10000 has passed.

Working with Google Glass

[154]

For more information on the requestLocationUpdates property,
as well as to know about choosing appropriate values for the second
parameter that, which can help in conserving battery life, check out the
documentation at http://developer.android.com/reference/
android/location/LocationManager.html.

We specify a parameter value of ACCURACY_FINE for our Criteria object, which
allows the app to access precise location information from location sources such as
GPS, cell towers and Wi-Fi. Next, we create an onLocationChanged method, which
will be called each time LocationManager determines that the user's location has
changed. We extract the Latitude and Longitude values from our location object
that is passed into this method by LocationListener and then use the Geocoder
class, and the getFromLocation property that, returns an array of addresses based
on the provided latitude and longitude values and display this information within
the setFootnote property of our CardBuilder card object.

In our next step, we create an AsyncTask class and pass in the Google Maps URL
along with the Latitude and Longitude values to the execute() method, which
returns back a static map image from the doInBackground method that runs in
the background and not on the main thread. Next, we use the BitmapFactory.
decodeStream method, which will convert the bytes returned from the stream
into a bitmap image. Once the doInBackground method has completed, the
onPostExecute method runs on the main thread and is passed to the bitmap image
in the result parameter, which we then add to our card using the addImage property.

Finally, we create our LocationListener methods such as onProviderDisabled,
onProviderEnabled, and onStatusChanged. These methods are called when the
provider service has been disabled by the user, enabled by the user, or when the
status of the provider changes.

For more information on the LocationListener class, refer to the
document at http://developer.android.com/reference/
android/location/LocationListener.html.

Modifying the Google Glass main activity UI
In our next section, we will need to modify our MainActivity.java file so that
based on the custom voice command issued, it will be able to launch the required
custom activity. We will need to create a menu so that our menu items will be
displayed within the OK Glass menu:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/LocationListener.html
http://developer.android.com/reference/android/location/LocationListener.html

Chapter 5

[155]

2.	 Next, double-click to open the MainActivity.java file, and add the
following highlighted code:
import com.google.android.glass.media.Sounds;
import com.google.android.glass.view.WindowUtils;
import com.google.android.glass.widget.CardBuilder;
import com.google.android.glass.widget.CardScrollAdapter;
import com.google.android.glass.widget.CardScrollView;
import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.media.AudioManager;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;

3.	 Now, we need to modify the MainActivity class by modifying the
onCreate(Bundle savedInstanceState) method to include a reference to
our requestFeature method. This will set up our app to use custom voice
commands when the class is instantiated, as shown in the following code:
@Override
protected void onCreate(Bundle bundle) {
 super.onCreate(bundle);
 // Set up our app to use custom voice commands
 getWindow().requestFeature(WindowUtils.
 FEATURE_VOICE_COMMANDS);

4.	 Here, we need to create an onCreatePanelMenu method that will be
called when intent has started, and will set up and display our custom
menu options within our Google Glass menu that we specified within our
activity_menu.xml file, as shown in this code snippet:
// Set up our menu options so that they will appear in the Google
Glass menu
@Override
public boolean onCreatePanelMenu(int featureId, Menu menu) {
 if (featureId == WindowUtils.FEATURE_VOICE_COMMANDS) {
 getMenuInflater().inflate(R.menu.activity_menu, menu);
 return true;
 }
 return super.onCreatePanelMenu(featureId, menu);Now
}

Working with Google Glass

[156]

5.	 Next, we need to create an onMenuItemSelected method that will be called
when intent has started, and will set up and display our custom menu
options within our Google Glass menu that we specified in our strings.xml
file, as shown in the following code:
// Method to call the relevant activity based on the voice command
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 // Handle item selection
 if (featureId == WindowUtils.FEATURE_VOICE_COMMANDS) {
 if (item.getItemId() == R.id.show_camera_item) {
 // Open new activity to do camera preview
 Intent intent = new Intent(this, CameraActivity.
class);
 startActivity(intent);
 return true;
 } else if (item.getItemId() == R.id.show_voice_item) {
 // Open new activity to do voice input
 Intent intent = new Intent(this, VoiceInputActivity.
class);
 startActivity(intent);
 return true;
 } else if (item.getItemId() == R.id.show_location_item) {
 // Open new activity to show users location on the Map
 Intent intent = new Intent(this,
 MapLocationActivity.class);
 startActivity(intent);
 return true;
 }
}
 return super.onMenuItemSelected(featureId, item);
 }
}

In the preceding code snippets, we started by adding our import statements that will
be responsible for allowing the custom voice commands that we give to Google Glass
to work correctly and as expected. Firstly, we need to tell our activity that we request
permission for it to use custom voice commands that are handled by getWindow().
requestFeature(WindowUtils.FEATURE_VOICE_COMMANDS). Next, we create an
onCreatePanelMenu method where we check whether we are listening for custom
voice commands, and then we inflate our menu for our activity so that our voice
command options appear within the OK Glass menu options.

Chapter 5

[157]

After the user triggers a voice command, the onMenuItemSelected method is called
and first it checks that featureId is for voice commands, which means that an
item has been selected from the OK Glass menu. In our next step, when the voice
commands are called, a check is performed to find out what the item is. Once this has
been determined, the relevant intent is initialized and the startActivity method
launches intent, displaying it on the Google Glass screen.

When developing native apps on Glass, there are required patterns to
use menus and stop the Glassware. Immersions requires that down
swiping should exit the app and return the user to the timeline, whereas
using live cards requires the presence of a dedicated stop command to
terminate the app.

Launching the app within Google Glass
Next, we can finally begin to compile, build, and run our application. You must first
ensure that you have connected your Google Glassware to your computer's USB
port, then simply press CMD + F9, and your app will be installed on your Google
Glassware wearable device.

When the app has been installed on your Android wearable device, it will be
launched and from the Hello Google Glass screen you have to speak these words:
OK Glass…Hello Google Glass…Voice Input…. Then your app will recognize
what you are asking and display the Voice Activity screen, which will contain
your spoken words displayed within an individual card notification.

An introduction to GDK and the Google
Mirror API
In this section, we will be discussing the Google Mirror API and how this is designed
to give developers access to Glass development without any prerequisites, as this
API is included as part of the core Glass OS, and does not rely on any third party
development tools. Google provides developers with its cloud-based RESTful
services that enable them to build Glassware apps by interacting with web service
calls that are part of the Google API platform, and is fully hosted, managed, and
maintained by Google.

The Mirror API works by allowing you to build web-based services that can interact
with Google Glass by providing the functionality over a cloud-based API that does
not require running code on a real Google Glass device.

Working with Google Glass

[158]

When working with the Mirror API, you need to keep in mind the following things
about this API:

•	 Executes an OAuth 2.0 request to obtain an authentication token
•	 Executes HTTP requests
•	 Provides the ability to post timeline items
•	 Receive notifications when your users interact with a timeline item, and

receive location-based updates

When using the Mirror API, you need to keep in mind that every HTTP request
sent from your Glass application needs to be authorized by providing a valid
token with each request. Tokens are issued by the Google API, using the standard
OAuth 2.0 protocol.

For more information on using OAuth 2.0 to access Google APIs,
refer to https://developers.google.com/identity/
protocols/OAuth2.

If you work with the GDK, you should know that this is an extension of the Android
SDK, which was initially designed to develop handheld device apps. This means,
your Glassware can leverage the entire Android SDK right from its activities and
services to obtaining the user's location using location-based services and the
camera APIs.

The GDK provides the following functionality for Glass:

•	 Ability to launch activities in response to voice commands
•	 Ability to add cards to the timeline
•	 Access to widgets and views designed specifically for Glass that allows you

to create layouts that are consistent with the rest of the platform

For more information on the GDK, go to https://developers.
google.com/glass/develop/gdk/.

The Mirror API playground
The Google Glass playground lets you experiment with how the content is displayed
within Glass. You can use the playground to push content to your Glass wearable
device, but if you don't own the real device, you can still see how this would look
like on the Glass display:

https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/glass/develop/gdk/
https://developers.google.com/glass/develop/gdk/

Chapter 5

[159]

As you can see in the preceding screenshot, we can choose a sample template
to use and see the associated HTML code that can be used to lay out our Glass
content, so we can see how it would appear if we were running this on a real
Glass wearable device.

The following code snippet shows the associated HTML code used in the preceding
screenshot to display the content within our Glass display:

<article class="photo">
 <img src="https://mirror-api-
 playground.appspot.com/links/filoli-spring-fling.jpg"
 width="100%" height="100%">
 <div class="overlay-gradient-tall-dark"/>
 <section>
 <img src="https://mirror-api
 -playground.appspot.com/links/lincoln-avatar.png"
 class="left"/>
 <p class="text-auto-size">Four score and seven years
 ago, our fathers brought forth on this continent a
 new nation, conceived in
 #liberty</p>
 <section>
</article>

Working with Google Glass

[160]

For more information on the Mirror API playground, please refer to
the documentation at https://developers.google.com/glass/
tools-downloads/playground.

The Google Glassware principle design
guidelines
When designing apps for Google Glass, these need to be designed differently than
how you would go about designing apps for phone or tablets, as they contain a
different user experience. It is important to keep in mind and follow the Glassware
principle design guidelines documentation that Google provides. This document
describes the guidelines and principles that help you to design consistent user
interfaces and user experiences for your Glass wearable apps, as well as ensure
that your application runs efficiently within the Glassware platform.

You need to consider the screen sizes of your custom layouts, as well as the ease
of use your app brings to the platform. The Glassware principle design guidelines
document also explains how to ensure the consistency of your application while
navigating from screen to screen, as well as the principles for designing good
user interfaces are also covered. Some of the design pattern guidelines that your
Glassware application needs to conform to are as follows:

•	 Design for Glass: When designing for Glass, users typically work with
multiple devices that store and display information for a specific time period
and Google Glass works best when information presented is simple, relevant,
and current.

•	 Don't get in the way: Google Glass is designed to be there when you need it
and it stays out of the way when you don't, but at the same time it must offer
the same functionality that supplements the user's life without taking any of
these features away.

•	 Keep it relevant: Information must be delivered at the right time, presented
at the right place within the Google Glass user interface for each of your
users, must contain information that is most relevant, and engage the users'
attention and with the most satisfaction.

https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/glass/tools-downloads/playground

Chapter 5

[161]

•	 Avoid the unexpected: Avoid sending content too frequently to your users,
as this can have a bad experience for your customers. This is because Google
Glass is so close to the users' senses that sending information too frequently
and at unexpected times will frustrate your users. Always make it clear
to users what is the intention of your Glassware and never pretend to be
something you're not.

•	 Build for people: When designing your users' interfaces, make sure that you
use imagery, colloquial voice interactions, and natural gestures. Ensure that
you focus on a fire-and-forget usage model where users can start actions
quickly and continue with what they're doing.

There is also information relating to the proper use and appearance of UI elements,
such as background images and icons, as well as how to go about distributing your
app to the Google Glassware platform.

To obtain further information about these guidelines, it is worth
checking out the Google Glassware principle guidelines documentation at
https://developers.google.com/glass/design/principles.

Summary
In this chapter, we learned about Google Glass and how we can use this platform
to build effective and interactive content by designing custom layouts to display
content on the Google Glass screen. We learned how to install and set up the Google
Glass Development Kit preview SDK, and got a brief overview about the Mirror API
emulator since there is no emulator currently for Glass development. However, there
is currently a Google Mirror API playground, which is a test environment to work
with static timeline cards. Then we had an introduction to the two different activities
that can be created for Glass, live cards, and immersions:

•	 Live cards are basically activities that are added to the Glass timeline and
display information relating to high-frequency updates in real-time, which
are constantly run in the background even when users are interacting with
different cards. These activities allow users to multitask and access different
kinds of information in real-time.

•	 Immersions, on the other hand, are fully customizable screens that run
outside of the timeline experience. Using this type of activity allows you
to design your own user interfaces and process user input.

https://developers.google.com/glass/design/principles

Working with Google Glass

[162]

Next, we learned how to customize the appearance and theme of custom menus as
they appear within the OK Glass menu and how we can incorporate various voice
commands within our app. We also learned about the CardScrollView class, which
is a container that displays multiple cards side-by-side, whereas Card displays the
content on screen. In addition, we learned how we can work with the Glass camera
to take a photo and save it as an image on the Google Glass device.

In the next and final chapter, we will learn how to create and customize layouts and
use layout themes for Android TV, as well as create the necessary activity fragments
to display content.

[163]

Designing and Customizing
Interfaces for Android TV

This chapter will provide you with the background and understanding of how
you can effectively design and customize user interfaces for Android TV. When
Google announced the Android TV platform during their Google I/O conference
back in 2014, their vision was to create a highly interactive and connected television
experience that would leverage and build upon the existing functionality found in
the Android platform.

Google also provided consumers with the choice of either purchasing a smart TV
with the platform built in, or alternatively adding Android TV to their existing
television set by purchasing a stand-alone set-top box, such as the Nexus Q.

Android TV essentially brings apps and functionality that users already enjoy
working with on their smaller Android devices, but with the added ability to
download Android TV apps from the Google Play Store. It also provides users with
a platform that supports Google Cast that will enable them to cast content from their
smartphone or tablet onto their Android TV device to make the viewing experience
much more exciting and usable from a living room couch.

This chapter includes the following topics:

•	 Creating and building an Android TV application
•	 Learning how to check for the presence of an Android TV interface
•	 Learning how to design and customize user interfaces
•	 Learning how to implement search functionality within Android TV
•	 Introducing you to the Android TV user interface guidelines

Designing and Customizing Interfaces for Android TV

[164]

Creating and building an Android TV
application
In this section, we will take a look at how to create an Android TV application using
the default Android TV template that Android Studio provides us with. As we
progress through the chapter, we will learn how to customize the Android TV user
interface by creating our very own custom fragment classes to display header and
row content information within the Android TV user interface.

In Android, a fragment is a class that represents a behavior or portion
of the user interface within an activity. Fragments were introduced to
help produce the user interface, so that it can adapt to the various device
orientations as well as function seamlessly across phones and tablets. You
can even use multiple fragments within the same activity and rearrange
them when the user rotates their device.

Firstly, create a new project in Android Studio by following these simple steps:

1.	 Launch Android Studio, and then click on the File | New Project
menu option.

2.	 Next, enter AndroidTVInterfaces for the Application name field.
3.	 Then, provide the name for the Company Domain field.
4.	 Now, choose the project location where you would like to save your

application code:

Chapter 6

[165]

5.	 Click on the Next button to proceed to the next step.
Next, we will need to specify the target form factors of our Android devices
that our application will run on. On this screen, we will need to choose the
minimum SDK version for our TV.

6.	 Click on the TV option and choose the API 21: Android 5.0 (Lollipop) option
for Minimum SDK:

7.	 Click on the Next button to proceed to the next step.
In our next step, we will need to add Android TV Activity to our application
project for the TV section of our app.

Designing and Customizing Interfaces for Android TV

[166]

8.	 From the Add an activity to TV screen, choose the Android TV Activity
option from the list of activities shown and click on the Next button to
proceed to the next step:

Next, we need to customize the properties for our Android TV activity so
that it can be used by our application. Here we will need to specify the name
for our activity, layout information, title, and layout fragment files.

9.	 From the Customize the Activity screen, enter MainActivity for Activity
Name shown and click on the Next button to proceed to the next step in
the wizard:

Chapter 6

[167]

10.	 Finally, click on the Finish button and the wizard will generate your project
and after a few moments, the Android Studio window will appear with
your project displayed in it.

In our next section, we will take a look at how we can create activity and fragment
classes to customize the look and feel of an Android TV user interface.

Customizing the Android TV user interface
In this section, we will begin by creating a custom header and custom row fragment
for our Android TV user interface. The previously generated code that handles the
displaying of header and row information currently exists within the MainFragment
class.

In the sections that follow, we will be taking a look at how we can separate this
information into two individual classes, which will make the code easier to maintain.

Designing and Customizing Interfaces for Android TV

[168]

Creating the CustomHeadersFragment class
In this section, we will proceed to create our CustomHeadersFragment class that
inherits from the HeadersFragment class and will be used to display our list of
categories within the side panel of our Android TV user interface.

First, we need to create a new class called CustomHeadersFragment:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

2.	 Next, right-click and choose the New | Fragment | Fragment (Blank)
menu option:

3.	 Then, enter CustomHeadersFragment to be used as the name for
Fragment Name.

4.	 Next, ensure that you have not selected Create layout XML?.
5.	 Now, ensure that the Include fragment factory methods? and Include

interface callbacks? options have not been selected.
6.	 Then click on the Finish button:

Chapter 6

[169]

Upon clicking the Finish button, the Android Studio code editor will open as shown
in the following screenshot:

Designing and Customizing Interfaces for Android TV

[170]

Over time, Google may decide to make changes to the Android Support
Libraries for a Leanback support and you may notice that certain
libraries and method calls don't exist, so you will need to change the
code slightly to work with these libraries. Please refer to the Support
Library document at https://developer.android.com/tools/
support-library/index.html#revisions to help you.

Our next step is to write the code that will populate the category details within our
Android TV side panel:

1.	 Open the CustomHeadersFragment.java file as shown in the preceding
screenshot.

2.	 Next, enter the following import statements:
import android.app.Fragment;
import android.os.Bundle;
import android.support.v17.leanback.app.HeadersFragment;
import android.support.v17.leanback.widget.ArrayObjectAdapter;
import android.support.v17.leanback.widget.HeaderItem;
import android.support.v17.leanback.widget.ListRow;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import java.util.LinkedHashMap;

3.	 Now, modify the CustomHeadersFragment class by handling the
onActivityCreated callback method that will be called when the fragment
is instantiated, as shown in this code snippet:
public class CustomHeadersFragment extends HeadersFragment {
 private static final String TAG = "CustomHeadersFragment";
 private ArrayObjectAdapter mAdapter;
 @Override
 public void onActivityCreated(Bundle savedInstanceState)
 {
 Log.i(TAG, "onCreate");
 super.onActivityCreated(savedInstanceState);

 setHeaderAdapter();
 setCustomPadding();
 }

4.	 Then, we need to create a setHeaderAdapter method that will be called
to display the category names within our side panel as shown in the
following code:
private void setHeaderAdapter() {
 mAdapter = new ArrayObjectAdapter();

https://developer.android.com/tools/support-library/index.html#revisions
https://developer.android.com/tools/support-library/index.html#revisions

Chapter 6

[171]

 LinkedHashMap<Integer, CustomRowsFragment>
 fragments = ((MainActivity) getActivity()).getFragments();
 int id = 0;
 for (int i = 0; i < fragments.size(); i++) {
 HeaderItem header = new HeaderItem(id, "Category " + i);
 ArrayObjectAdapter innerAdapter = new
 ArrayObjectAdapter();
 innerAdapter.add(fragments.get(i));
 mAdapter.add(id, new ListRow(header, innerAdapter));
 id++;
 }
 setAdapter(mAdapter);
}

5.	 Next, we need to create a setCustomPadding new method that will be called
to adjust the display when the categories are displayed within the side panel
as shown in this code snippet:
private void setCustomPadding() {
 getView().setPadding(0,
 Utils.convertDpToPixel(getActivity(), 128),
 Utils.convertDpToPixel(getActivity(), 48), 0);
}

6.	 Finally, we need to create an OnItemSelectedListener method that will
be called when an item has been selected within the side panel window as
shown in the following code:
private AdapterView.OnItemSelectedListener
getDefaultItemSelectedListener() {
 return new AdapterView.OnItemSelectedListener() {
 @Override
 public void onItemSelected(AdapterView<?>
 adapterView, View view, int i, long l) {
 Object obj = ((ListRow)
 adapterView.getItemAtPosition(i))
 .getAdapter().get(0);
 getFragmentManager().beginTransaction().
 replace(R.id.rows_container,
 (Fragment) obj).commit();
 ((MainActivity)
 getActivity()).updateCurrentRowsFragment
 ((CustomRowsFragment) obj);
 }
 @Override

Designing and Customizing Interfaces for Android TV

[172]

 public void onNothingSelected(AdapterView<?> adapterView) {
 Log.d(TAG,"Nothing has been selected");
 }
 };
}

In the preceding code snippets, we started by adding our import statements that will
be responsible for allowing our application to communicate with Android TV. We
incorporate the Leanback support library that provides us with prebuilt components
for our TV interface. We then proceed to extend our CustomHeadersFragment class
using the HeadersFragment class and then add the code for our onActivityCreated
(Bundle savedInstanceState) method. This will be called when the activity is
instantiated and sets up a setOnItemSelectedListener listener method that will be
responsible for the category after it has been selected.

In our next step, we create a setHeaderAdapter method that will be called to populate
the category items in the left side panel. This method creates an ArrayObjectAdapter
class that contains a list of all of our header items and will be called each time a
category has been chosen and calls the CustomRowsFragmentListRow element to
retrieve the associated row information for the chosen category. In our next step, we
create a setCustomPadding method that will be used to adjust the padding for our
fragment view, as soon as it is created.

Creating the CustomRowsFragment class
In this section, we will proceed to create our custom rows fragment class that inherits
from the RowsFragment class and will be used to display our row information for the
selected category that has been clicked within the side panel of our Android TV user
interface.

First, we need to create our CustomRowsFragment fragment like we did in the
previous section:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

2.	 Next, right-click and choose the New | Fragment | Fragment (Blank)
menu option and enter CustomRowsFragment to be used as the name
for Fragment Name.

3.	 Now, ensure that you have not selected the Create Layout XML? option.

Chapter 6

[173]

4.	 Then, ensure that the Include fragment factory methods? and Include
interface callbacks? options have not been selected and then click on the
Finish button to open the Android Studio code editor window.
Our next step is to write the code that will be responsible for populating
our row information within the Android TV interface.

5.	 Open the CustomRowsFragment.java file that we just created.
6.	 Next, enter the following import statements:

import android.graphics.Color;
import android.os.Bundle;
import android.support.v17.leanback.app.RowsFragment;
import android.support.v17.leanback.widget.ArrayObjectAdapter;
import android.support.v17.leanback.widget.HeaderItem;
import android.support.v17.leanback.widget.ListRow;
import android.support.v17.leanback.widget.ListRowPresenter;
import android.util.Log;
import android.util.TypedValue;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import java.util.Collections;
import java.util.List;

7.	 Then, modify the onCreateView(LayoutInflater inflater,
ViewGroupcontainer, Bundle savedInstanceState) method that will be
called when the fragment is created, as shown in the following code:
public class CustomRowsFragment extends RowsFragment {
 private final int NUM_ROWS = 5;
 private final int NUM_COLS = 15;
 private ArrayObjectAdapter rowsAdapter;
 private CardPresenter cardPresenter;
 private static final int HEADERS_FRAGMENT_SCALE_SIZE = 300;
 private static final String TAG = "CustomRowsFragment";
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
 container, Bundle savedInstanceState) {
 View v = super.onCreateView(inflater, container,
 savedInstanceState);
 int marginOffset = (int)
 TypedValue.applyDimension(TypedValue.COMPLEX_UNIT_DIP,
 HEADERS_FRAGMENT_SCALE_SIZE,
 getResources().getDisplayMetrics());

Designing and Customizing Interfaces for Android TV

[174]

 ViewGroup.MarginLayoutParams params =
 (ViewGroup.MarginLayoutParams) v.getLayoutParams();
 params.rightMargin -= marginOffset;
 v.setLayoutParams(params);
 v.setBackgroundColor(Color.DKGRAY);
 return v;
 }

8.	 Next, modify the CustomRowsFragment class by creating an
onActivityCreated (Bundle savedInstanceState) method that
will be called when the fragment is instantiated, as shown in the following
code snippet:
@Override
public void onActivityCreated(Bundle savedInstanceState) {
 Log.i(TAG, "onCreate");
 super.onActivityCreated(savedInstanceState);
 loadRows();
 setCustomPadding();
}

9.	 Now, as shown in the following code, we need to create a loadRows() new
method that will be called to display the associated row information for the
chosen category within our side panel:
private void loadRows() {
 rowsAdapter = new ArrayObjectAdapter(new
 ListRowPresenter());
 cardPresenter = new CardPresenter();
 List<Movie> list = MovieList.setupMovies();
 int i;
 for (i = 0; i < NUM_ROWS; i++) {
 if (i != 0) Collections.shuffle(list);
 ArrayObjectAdapter listRowAdapter = new
 ArrayObjectAdapter(cardPresenter);
 for (int j = 0; j < NUM_COLS; j++) {
 listRowAdapter.add(list.get(j % 5));
 }
 HeaderItem header = new HeaderItem(i,
 MovieList.MOVIE_CATEGORY[i]););
 rowsAdapter.add(new ListRow(header, listRowAdapter));
 }
 setAdapter(rowsAdapter);
}

Chapter 6

[175]

10.	 Then, we need to create a setCustomPadding()method that will be called
to adjust the padding for each of the rows within our Android TV interface
as follows:
private void setCustomPadding() {
 getView().setPadding(Utils.convertDpToPixel(getActivity(),
 -24), Utils.convertDpToPixel(getActivity(), 128),
 Utils.convertDpToPixel(getActivity(), 48), 0);
}

11.	 Finally, we need to create a new refresh() method that will be called to
adjust the padding for each of the rows within our Android TV interface
when the contents have changed as shown in the following code snippet:
public void refresh() {
 getView().setPadding(Utils.convertDpToPixel(getActivity(),
 -24), Utils.convertDpToPixel(getActivity(), 128),
 Utils.convertDpToPixel(getActivity(), 300), 0);
}

In the preceding code snippets, we started by adding our import statements that will
be responsible for allowing our application to communicate with Android TV and,
just as we did in our CustomHeadersFragment class, we incorporate the Leanback
support library that provides us with prebuilt components for our TV interface.

We then proceed to extend our CustomRowsFragment class using the RowsFragment
class and then add the code for our onCreateView (LayoutInflater inflater,
viewGroup container, Bundle savedInstanceState) method that will be
called when the view has been created. This is responsible for setting the layout
information for our margins and background of our fragment. In our next step, we
add the code for our onActivityCreated (Bundle savedInstanceState) method
that will be called when the activity is instantiated and calls the loadRows method
to populate our fragment with information for the corresponding chosen category,
before calling the setCustomPadding method that will be used to adjust the padding
for our fragment view as soon as it is created.

In our next step, we create a loadRows method that will be called each time the
activity is created and populates our view fragment with the associated row
information for the chosen category. This method sets up an ArrayObjectAdapter
class that instantiates the ListRowPresenter object, and then calls the set upMovies
method from our MovieList class model and assigns this to a list object.

Designing and Customizing Interfaces for Android TV

[176]

Next, we iterate through each row and column, shuffle the contents of our list object
to ensure that we get different information each time our category is selected, create
a listRowAdapter object that inherits from the CardPresenter class, extract the
movie header information, and add the item details to rowAdapter for the chosen
category. In our next step, we create a setCustomPadding method and refresh that
will be used to adjust the padding for our fragment view, as soon as it is created.

Creating the CustomFrameLayout class
In this section, we will proceed to create our custom frame layout class that inherits
from the FrameLayout class and will be used to ensure that the information is
presented correctly within the TV interface.

First, we need to create our CustomFrameLayout class like we did in the previous
section:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

2.	 Next, right-click and choose the New | Java Class menu option:

Chapter 6

[177]

3.	 Then, enter CustomFrameLayout to be used as the name for our class and
click on the OK button:

Designing and Customizing Interfaces for Android TV

[178]

Upon clicking the OK button, the Android Studio code editor will open, as shown in
the following screenshot:

Our next step is to write the code that will be responsible for ensuring that the
layout of our custom header and row information renders correctly when it is
being displayed within the Android TV interface:

1.	 Open the CustomFrameLayout.java file that we just created.
2.	 Next, enter the following import statements:

import android.content.Context;
import android.util.AttributeSet;
import android.widget.FrameLayout;

Chapter 6

[179]

3.	 Then, modify the CustomFrameLayout class as shown in the following
code snippet:
public class CustomFrameLayout extends FrameLayout {
 public CustomFrameLayout(Context context) {
 this(context, null, 0);
 }
 public CustomFrameLayout(Context context,
 AttributeSet attrs) {
 this(context, attrs, 0);
 }
 public CustomFrameLayout(Context context, AttributeSet
 attrs, int defStyle) {
 super(context, attrs, defStyle);
 }
}

In the preceding code snippets, we started by adding our import statements that will
be responsible for allowing our application to communicate with Android TV. We
then proceed to extend our CustomFrameLayout class using the FrameLayout class,
which is used to handle the positioning of all child items within the view. Next, we
create our class constructor and add the code for our CustomFrameLayout(Content
context) method that will be called when the class is instantiated and called. The
additional overloaded methods are required when inheriting from the FrameLayout
class, and are there for handling the setting of attributes, default layout styles, and
so on.

Creating the SearchActivity class
In this section, we will proceed to create our custom SearchActivity class that
will enable us to search for content using Google Play Services. This class will call
a custom fragment class, which we will be creating later on.

First, we need to create a new blank SearchActivity class, which is basically an
application component that will provide us with a screen so that the users can
interact with it:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

Designing and Customizing Interfaces for Android TV

[180]

2.	 Next, right-click and choose the New | Activity | Blank Activity menu
option as shown in the following screenshot:

Next, we need to customize the properties for our blank activity so that it can
be used by our application. Here we will need to specify the name for our
activity, the layout information, and the title for our activity.

3.	 Enter TVSearchActivity for the Activity Name option and activity_
search for Layout Name.

Chapter 6

[181]

4.	 Next, enter TVSearchActivity for Title as shown in this screenshot:

5.	 Then, click on the Finish button to have the wizard generate the necessary
files for you. Once finished, this will open the Android Studio code editor
with your code file displayed in it.

Our next step is to write the code that will be responsible for calling the layout
information and our fragment file that will be used to handle our search
functionality:

1.	 Open the TVSearchActivity.java file that we just created.
2.	 Next, enter in the following import statements:

import android.app.Activity;
import android.os.Bundle;

3.	 Now, modify the TVSearchActivity class as shown in the following code:
public class TVSearchActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Designing and Customizing Interfaces for Android TV

[182]

 setContentView(R.layout.activity_search);
 }
}

In the preceding code snippets, we started by adding our import statements that will
be responsible for allowing our application to communicate with an Android TV. We
then proceeded to add the code for our onCreate(Bundle savedInstanceState)
method that will be called when the class is instantiated and then display our search
layout content within the current view.

Creating the SearchFragment class
In this section, we will proceed to create our custom search fragment class that will
be inherited from the SearchFragment class. This class will be used to handle all of
the search capabilities with our customized TV user interface.

First, we need to create our TVSearchFragment fragment class like we did in the
previous sections:

1.	 From the Project Navigator window, expand the app section, then select and
expand the java section.

2.	 Next, right-click and choose the New | Fragment | Fragment (Blank)
menu option and enter TVSearchFragment to be used as the name for
our fragment.

3.	 Next, ensure that you have not selected the Create Layout XML? option.
4.	 Now, ensure that the Include fragment factory methods? and Include

interface callbacks? options have not been selected and then click on the
Finish button to open the Android Studio code editor window.

Our next step is to write the code that will be responsible for handling all of the
search capabilities within our customized Android TV interface:

1.	 Open the TVSearchFragment.java file that we just created.
2.	 Next, enter the import statements as shown in the following code:

import android.os.Bundle;
import android.os.Handler;
import android.support.v17.leanback.app.SearchFragment;
import android.support.v17.leanback.widget.ArrayObjectAdapter;
import android.support.v17.leanback.widget.HeaderItem;
import android.support.v17.leanback.widget.ListRow;
import android.support.v17.leanback.widget.ListRowPresenter;
import android.support.v17.leanback.widget.ObjectAdapter;

Chapter 6

[183]

import android.support.v17.leanback.widget.OnItemClickedListener;
import android.support.v17.leanback.widget.Row;
import android.text.TextUtils;
import android.util.Log;

3.	 Now, modify the TVSearchFragment class as shown in this code snippet:
public class TVSearchFragment extends SearchFragment implements
SearchFragment.SearchResultProvider {
 private static final String TAG = "TVSearchFragment";
 private static final int SEARCH_DELAY_MS = 300;
 private ArrayObjectAdapter mRowsAdapter;
 private Handler mHandler = new Handler();
 private SearchRunnable mDelayedLoad;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.i(TAG, "onCreate");
 super.onCreate(savedInstanceState);
 mRowsAdapter = new ArrayObjectAdapter(new ListRowPresenter());
 setSearchResultProvider(this);
 mDelayedLoad = new SearchRunnable();
 }

4.	 Then, we need to create a getResultsAdapter() method that will be
responsible for holding the number of rows that have been returned
from our search query adapter. This is done as follows:
@Override
public ObjectAdapter getResultsAdapter() {
 return mRowsAdapter;
}

5.	 Next, as shown in the following code, we need to create a
onQueryTextChange() method that will be responsible for refreshing
the TV user interface as the user types in a query search string:
@Override
public boolean onQueryTextChange(String newQuery) {
 mRowsAdapter.clear();
 if (!TextUtils.isEmpty(newQuery)) {
 mDelayedLoad.setSearchQuery(newQuery);
 mHandler.removeCallbacks(mDelayedLoad);
 mHandler.postDelayed(mDelayedLoad, SEARCH_DELAY_MS);
 }
 return true;
}

Designing and Customizing Interfaces for Android TV

[184]

6.	 Now, we need to create a onQueryTextSubmit() method that will be called
when the user finishes entering his/her search criteria and hits the search
button on the TV control pad. This method is created as follows:
@Override
public boolean onQueryTextSubmit(String query) {
 mRowsAdapter.clear();
 if (!TextUtils.isEmpty(query)) {
 mDelayedLoad.setSearchQuery(query);
 mHandler.removeCallbacks(mDelayedLoad);
 mHandler.postDelayed(mDelayedLoad, SEARCH_DELAY_MS);
 }
 return true;
}

7.	 Next, we need to create and implement a Runnable class and include
a method called setSearchQuery that starts executing the active class.
This is done as follows:
private class SearchRunnable implements Runnable {
 private String query;
 public void setSearchQuery(String query) {
 this.query = query;
 }
 @Override
 public void run() {
 mRowsAdapter.clear();
 ArrayObjectAdapter adapter = new ArrayObjectAdapter(new
 CardPresenter());
 adapter.addAll(0, MovieList.list);
 HeaderItem header = new HeaderItem(0,
 getResources().getString(R.string.search_results);
 mRowsAdapter.add(new ListRow(header, adapter));
 }
}

In the preceding code snippets, we started by adding our import statements that
will be responsible for allowing our application to communicate with an Android TV
and, just as we did in our CustomRowsFragment class, we incorporated the Leanback
support library that provides us with prebuilt components for our TV interface. We
then proceeded to extend our TVSearchFragment class using the SearchFragment
class, add the code for our onCreate (Bundle savedInstanceState) method
that will be called when the fragment has been instantiated, and then set it to
handle the returned search results. This is because we have specified that we will
be implementing from the SearchFragment.SearchResultProvider class.

Chapter 6

[185]

In our next step, we proceed to call the searchRunnable method that implements
the Runnable class that includes a method called run that starts executing the active
class each time the fragment activity is called, and populates our view fragment with
the associated row information matching the entered search criteria. This method
sets up an ArrayObjectAdapter class that instantiates the CardPresenter object,
adds all movies from our MovieList class model, and then displays the movie
details that match the entered search criteria.

Creating the custom activity layout
resource file
In this section, we will proceed to create our custom layout resource file that will be
responsible for ensuring that our custom fragment classes render correctly within
the TV user interface:

1.	 From the Project Navigator window, expand the app section, select and
expand the res | layout section.

2.	 Next, right-click and choose the New | Layout resource file menu option as
shown in the following screenshot:

Next, we need to customize the properties of Resource File so that it can be
used by our application. Here we will need to specify the filename of our
layout file and the Root element name for our layout information.

Designing and Customizing Interfaces for Android TV

[186]

3.	 Enter activity_custom for the File name field.
4.	 Next, enter packageName.CustomFrameLayout for the Root element field as

shown in this screenshot:

You need to ensure that Root element contains the same package name as
your project, otherwise you will experience build errors.

5.	 Next, click on the OK button to have the wizard generate the necessary files
for you. Once finished, this will open the Android Studio code editor with
your custom layout file displayed.
Our next step is to construct the layout for our custom headers and rows
fragments, as well as correctly place the search button within our TV
user interface.

6.	 From the Project Navigator window, open activity_custom.xml that is
located in the res | layout folder and add the following code:
<?xml version="1.0" encoding="utf-8"?>
<com.geniesoftstudios.androidtvinterfaces.CustomFrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:clipChildren="false" >

Chapter 6

[187]

<android.support.v17.leanback.widget.SearchOrbView
 android:id="@+id/custom_search_orb"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="27dp"
 android:layout_marginLeft="56dp"
 android:layout_gravity="top|left"/>
<FrameLayout
 android:id="@+id/header_container"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_gravity="top|left"/>
<FrameLayout
 android:id="@+id/rows_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="top|left"
 android:layout_marginLeft="300dp"/>
</geniesoftstudios.com.androidtvinterfaces.CustomFrameLayout>

7.	 Next, from the Project Navigator window open activity_search.xml that
is located in the res | layout folder, and add the following code snippet:
<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/
android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/search_fragment"
android:name="com.geniesoftstudios.androidtvinterfaces.
TVSearchFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".TVSearchActivity"
tools:deviceIds="tv"
tools:ignore="MergeRootFrame"/>

8.	 Then, from the Project Navigator window choose the app section, select the
manifests folder, and then select the AndroidManifest.xml file.

9.	 Now, under the manifest section of the Android TV app, we need to include
the permissions to allow our app to run within the handheld device. Enter
the following permissions:
<uses-permission android:name="android.permission.INTERNET"></
uses-permission>
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-feature
 android:name="android.hardware.touchscreen"
 android:required="false" />

Designing and Customizing Interfaces for Android TV

[188]

<uses-feature
 android:name="android.software.leanback"
 android:required="true" />

10.	 Next, modify the <application> section of the TV app and enter the
following highlighted code:

<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Leanback" >
<activity
 android:name=".MainActivity"
 android:icon="@drawable/app_icon_your_company"
 android:label="@string/app_name"
 android:logo="@drawable/app_icon_your_company"
 android:screenOrientation="landscape" >
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category
android:name="android.intent.category.LEANBACK_LAUNCHER"/>
</intent-filter>
</activity>
<activity android:name=".DetailsActivity"/>
<activity android:name=".PlaybackOverlayActivity"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"/>
<activity android:name=".BrowseErrorActivity" />
<activity android:name=".TVSearchActivity" />
</application>

In our next section, we will need to modify the MainActivity.java file so that it
will be set up to use our CustomHeadersFragment and CustomRowsFragment files,
as well as call our TVSearchActivity file when the search icon has been pressed.
So let's get started:

1.	 From the Project Navigator window, expand the app section, select and
expand the java section.

2.	 Next, double-click to open MainActivity.java and add the following
highlighted code:
import android.app.Activity;
import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.app.UiModeManager;
import android.content.Intent;
import android.content.res.Configuration;

Chapter 6

[189]

import android.os.Bundle;
import android.support.v17.leanback.widget.SearchOrbView;
import android.view.View;
import java.util.LinkedHashMap;
public class MainActivity extends Activity {
 private SearchOrbView orbView;
 private CustomHeadersFragment headersFragment;
 private CustomRowsFragment rowsFragment;
 private final int CATEGORIES_NUMBER = 5;
 private LinkedHashMap<Integer, CustomRowsFragment>
 fragments;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_custom);
 // Check if we are running on an Android TV Device
 if (isRunningOnTVDevice()) {
 orbView = (SearchOrbView)
 findViewById(R.id.custom_search_orb);
 orbView.setOrbColor(getResources().
 getColor(R.color.search_opaque));
 orbView.bringToFront();
 orbView.setOnOrbClickedListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Intent intent = new
 Intent(getApplicationContext(),
 TVSearchActivity.class);
 startActivity(intent);
 }
 });
 fragments = new LinkedHashMap<Integer,
 CustomRowsFragment>();
 for (int i = 0; i < CATEGORIES_NUMBER; i++) {
 CustomRowsFragment fragment = new
 CustomRowsFragment();
 fragments.put(i, fragment);
 }
 headersFragment = new CustomHeadersFragment();
 rowsFragment = fragments.get(0);
 FragmentManager fragmentManager =
 getFragmentManager();
 FragmentTransaction transaction =
 fragmentManager.beginTransaction();

Designing and Customizing Interfaces for Android TV

[190]

 transaction
 .replace(R.id.header_container,
 headersFragment, "CustomHeadersFragment")
 .replace(R.id.rows_container, rowsFragment,
 "CustomRowsFragment");
 transaction.commit();
 }
 }
 // Check if we are using an Android TV Device
 private boolean isRunningOnTVDevice() {
 UiModeManager uiModeManager = (UiModeManager)
 getSystemService(UI_MODE_SERVICE);
 if (uiModeManager.getCurrentModeType() ==
 Configuration.UI_MODE_TYPE_TELEVISION){
 return true;
 }
 else {
 return false;
 }
 }
 public LinkedHashMap<Integer, CustomRowsFragment>
 getFragments() {
 return fragments;
 }
 public void updateCurrentRowsFragment(CustomRowsFragment
 fragment) {
 rowsFragment = fragment;
 }
}

In the preceding code snippets, we started by adding our import statements that
will be responsible for allowing our application to communicate with Android
TV and, just as we did in our CustomRowsFragment class, we incorporate the
Leanback support library that provides us with prebuilt components for our TV
interface. We then proceed to create our private methods for our searchOrbView,
CustomHeadersFragment, and CustomRowsFragment fragment classes, and
then modify the onCreate (Bundle savedInstanceState) method to call the
setContentView method using our activity_custom layout file when the activity
has been instantiated.

Chapter 6

[191]

In our next step, we call the isRunningOnTVDevice method to check to see whether
we are running on an Android TV device, then proceed to initialize our search icon
properties, and assign an onClickListener method so that our TVSearchActivity
class will be called when this button is clicked. Next, we iterate through the total
number of categories that we have specified by the CATEGORIES_NUMBER variable
while creating an array for each row fragment based on each category.

Then we create a fragmentManager object that will be responsible for saving our
custom header and row fragment objects, and use the beginTransaction method
to update the header_container and rows_container identifiers within our
activity_custom layout resource file with the name of CustomHeadersFragment.
We do the same for CustomRowsFragment before finally committing the transaction
to tell fragmentManager that we have finished.

In our next step, we create the isRunningOnTVDevice method that will help
us determine whether we are running on an Android TV device. We use
the uiModeManager class and use the configuration type of UI_MODE_TYPE_
TELEVISION. We then create a LinkedHashMap method that will get each fragment
for our header objects and then once the fragment has been updated, it calls the
updateCurrentRowsFragment method to return the total number of rows contained
within each category fragment.

Next, we can finally begin to compile, build, and run our application. Simply
press CMD + F9 and choose your AVD or your Android TV device from the
list of available devices as shown in the following screenshot:

Designing and Customizing Interfaces for Android TV

[192]

Once the Android TV app has been installed on the AVD, you should see the
category information displayed within the side panel along with the associated
content information displayed within the middle portion of the TV user interface.
Upon clicking the search magnifying glass our custom search activity fragment will
be displayed and you can begin searching, as can be seen in the following screenshot:

As you can see, using fragments and classes you are able to customize the Android
TV user interface to provide a brilliant viewing experience based on your needs.

In our next section, we will take a look at the Android TV user interface design
guidelines and also see what is the importance of designing user interfaces that
are intuitive, consistent, and designed with the user in mind to provide the best
viewing experience.

Chapter 6

[193]

The Android TV user interface
design guidelines
Designing apps for Android TV need to be different from how you would go about
designing apps for phones or tablets, and wearables, as these contain a different user
experience. It is important to keep in mind and follow the Android User Interface
design principles documentation that Google provides. This document describes
the guidelines and principles that help you to design consistent user interfaces and
experiences for your Android TV apps, as well as ensure that your application runs
efficiently on the Android TV platform, and it involves considering the screen sizes
of your custom layouts as well as ease of use your app brings to the platform.

Other areas are covered to ensure the consistency of your application as you navigate
from screen to screen, as well as the principles to design good user interfaces. This
document also includes some design pattern guidelines that your application needs
to conform to. These are as follows:

•	 You will need to ensure that you design your layouts for the landscape
orientation as TV screens always use this viewing orientation. Try to make
use of fragment classes to create your user interfaces in sections, and use
the GridView class to make better use of the viewing screen space.

•	 Ensure that you design your artwork assets for best viewing in HD resolution
set to 1920 x 1080 pixels and make use of on-screen navigational controls on
the left- or right-hand side of the screen.

•	 TV screen layouts should be simple; it is important to avoid cluttering
the user interface by adding sufficient margins and padding between
layout controls.

•	 It is good to provide in-built search functionality within your app as this
allows your users to discover new content using Google search features.

•	 Ensure that your app makes use of the prebuilt fragments that are contained
within the v17 Leanback support library classes. These prebuilt fragments
provide user interface widgets for TV apps, particularly apps that do media
playback and have been specifically designed for use on TV devices with
guidance from the Android user experience team.

•	 When adding typographical text and controls to your Android TV
applications, ensure that you use the recommended minimum font
size of 12 sp, and the default text size should be set to 18 sp.

There is also information relating to the proper use and appearance of UI elements,
such as app and game banners, background images and icons, as well as distributing
your app to the Android TV platform.

Designing and Customizing Interfaces for Android TV

[194]

To obtain further information about these guidelines, it is worthwhile
checking out the Android TV design principles documentation at
http://developer.android.com/design/tv/index.html.

Summary
In this chapter, we learned about Android TV and how we can use this platform
to build effective and interactive content by designing and customizing our own
interfaces for the Android TV platform.

We got acquainted with and learned more about the HeadersFragment and
RowsFragment classes, and how we can inherit from these classes provided to us by
the Android Leanback support library so that we can design our own custom classes
for the Android TV platform to provide a nice and clean user experience.

Next, we learned about the FrameLayout class and how we use this to extend the
capabilities of creating our own layouts so that we can present content professionally
within the TV user interface. Then, we looked at how we can incorporate searching
capabilities within TV user interface using the SearchFragment class that provides
us with the callback methods to query search criteria and return content.

We then moved on and learned how to create a custom resource layout file that
makes use of our CustomLayout class to render our custom header and row
information within the Android TV user interface. Finally, we spent some time
learning about the design guidelines for Android TV and the design considerations
developers need to consider when designing their user interfaces.

This was the final chapter. I hope that you had a ton of fun working through this
book, have learned a lot, and have got your Android wearable projects started off on
the right foot. Now, you have a wealth of experience with Android Wear and know
what it takes to build rich and engaging apps for the Wearable platform using a host
of exciting concepts and techniques that are unique to Android's Wear platform.

If, like me, learning about all these cutting-edge technologies and concepts has got
you to overflow with ideas, then I can't wait to see what you would build!

Thank you for purchasing this book and I wish you the very best of luck with your
Android Wear adventures.

For any development support questions, you can contact the Android
Developer support resources forum at http://developer.android.
com/support.html.

http://developer.android.com/design/tv/index.html
http://developer.android.com/support.html
http://developer.android.com/support.html

[195]

Index
A
activity lifecycle, Android

URL 18
Android (AVD) Emulator

configuring 8-10
setting up 8-10

Android developer tools
URL 6

Android development environment
setting up 6, 7

Android notification
about 22
example 22

Android Studio, for Linux systems
URL, for downloading 6

Android Studio, for Mac OS X systems
URL, for downloading 6

Android Studio, for Windows systems
URL, for downloading 6

Android TV application
building 164-167
creating 164-167

Android TV user interface
design guidelines 193

Android TV user interface customization
about 167
custom activity layout resource file,

creating 185-192
CustomFrameLayout class,

creating 176-179
CustomHeadersFragment class,

creating 168-172
CustomRowsFragment class,

creating 172-176

SearchActivity class, creating 179-182
SearchFragment class, creating 182-184

Android Virtual Device (AVD) 9
Android Wear

about 2
APIs 4
architecture 3, 4

Android wearable
about 2
image data, transferring to 111-113
messages, sending to 101-103
user interface guidelines 76, 77

Android wearable app
debugging, over Bluetooth 69-71
packaging 77-82

Android wearable watch face app
creating 52-55

Android Wear activity component
creating 14-18

Android Wear Design Principles
URL, for documentation 77

Android Wear device
apps, directly running on 71-76

Android Wear support library
installing 7

APIs, Android Wear
Data API 5
Message API 5
Node API 4

apps
launching, within Google Glass 157
running, directly on Android Wear

device 71-76

[196]

B
basic notification, for wearables

blank activity, adding 25, 26
blank activity, customizing 25, 26
creating 23
dependencies, adding to Gradle

scripts 26-33
form factors, specifying 24

Bluetooth
Android wearable app, debugging

over 69-71
Bluetooth Low Energy (BLE) 4

C
camera

accessing, through Google Glass 144-148
Confirmations documentation,

Android Wear
URL 48

connections
establishing, for mobile activity 99-101

custom notification
creating, for wearables 33-39

custom watch face service class
creating 60-68

D
DataApi

used, for receiving image
data 114-119

design guidelines, Android TV user
interface

about 193
URL 194

G
Google Glass

app, launching within 157
camera, accessing through 144-148
Google Maps API, incorporating

with 149-154
voice input, incorporating within 141-144

Google Glass application
AndroidManifests file, configuring 137-139
creating 127-130
custom camera layout resource file,

creating 139-141
custom menu resource file,

creating 134-137
theme, setting for 131

Google Glass Development Kit (GDK)
about 123, 157
functionality, for Glass 158
URL 158

Google Glass Development Kit SDK
installing 122-124

Google Glass main activity UI
modifying 154-157

Google Glassware principle design
 guidelines

about 160, 161
URL, for documentation 161

Google Maps API
incorporating, with Google Glass 149-154

Google Mirror API 157
Google USB Driver

installing, for Windows 124-127
URL 127

Gradle 27

I
image data

receiving, DataApi used 114-119
transferring, to Android wearable 111-113

immersion activity 130
information

presenting, inside WatchFace class 55-60
installing

Android Wear support library 7
Google Glass Development

Kit SDK 122-124
Google USB drivers, for Windows 124-127

J
Java Runtime Environment (JRE) 6

[197]

L
LocationListener class

URL 154

M
MessageAPI

used, for receiving messages 104-110
messages

sending, to Android wearable 101-103
Mirror API playground

about 158, 159
URL 160

mobile activity
component, creating 12, 13
connections, establishing through 99-101
UI, creating for 92-94

multiple notifications
receiving, through page stacking

process 43-48

N
notification

voice input, receiving within 39-43

O
OAuth 2.0, for accessing Google APIs

URL 158

P
page stacking process

multiple notifications, receiving
through 43-48

project configuration, for running
Google Glass 131-134

R
requestLocationUpdates property

URL 154

S
simple Android wearable application

Android Wear activity component,
creating 14-18

building 10, 11
mobile activity component, creating 12, 13

T
theme

setting, for Google Glass application 131

U
UI

creating, for mobile activity 92-94
creating, for wear activity 94-98

V
voice input

incorporating, within Google Glass 141-144
receiving, within notification 39-43

W
WatchFace class

information, presenting inside 55-60
wearables

custom notification, creating for 33-39
wearable send and receive application

creating 86-91
wear activity

UI, creating for 94-98
Windows

Google USB drivers, installing for 124-127

[199]

Thank you for buying
Android Wearable Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

[200]

Learning Android Forensics
ISBN: 978-1-78217-457-8 Paperback: 322 pages

A hands-on guide to Android forensics, from
setting up the forensic workstation to analyzing
key forensic artifacts

1.	 A professional, step-by-step approach to
forensic analysis complete with key strategies
and techniques.

2.	 Analyze the most popular Android applications
using free and open source tools.

3.	 Learn forensically-sound core data extraction
and recovery techniques.

Android NDK: Beginner's Guide
Second Edition
ISBN: 978-1-78398-964-5 Paperback: 494 pages

Discover the native side of Android and inject
the power of C/C++ in your applications

1.	 Create high performance mobile applications
with C/C++ and integrate with Java.

2.	 Exploit advanced Android features such
as graphics, sound, input, and sensing.

3.	 Port and reuse your own or third-party libraries
from the prolific C/C++ ecosystem.

Please check www.PacktPub.com for information on our titles

[201]

Learning Unity Android
Game Development
ISBN: 978-1-78439-469-1 Paperback: 338 pages

Learn to create stunning Android games using Unity

1.	 Leverage the new features of Unity 5 for the
Android mobile market with hands-on projects
and real-world examples.

2.	 Create comprehensive and robust games using
various customizations and additions available
in Unity such as camera, lighting, and
sound effects.

3.	 Precise instructions to use Unity to create
an Android-based mobile game.

Learning Android
Application Testing
ISBN: 978-1-78439-533-9 Paperback: 274 pages

Improve your Android applications through
intensive testing and debugging

1.	 Focus on Android instrumentation testing
to ensure full application coverage.

2.	 Apply testing techniques and utilize tools to
improve Android application development.

3.	 Build intensively tested and bug free
Android applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Android Wearables and Building Your First Android Wear App
	Introducing Android wearables
	Understanding the Android Wear architecture
	Setting up an Android development environment
	Installing the Android Wear support library
	Setting up and configuring the Android (AVD) Emulator

	Building a simple Android wearable application
	Creating the mobile activity component
	Creating the Android Wear activity component

	Summary

	Chapter 2: Creating Notifications
	Introducing Android notifications
	Creating a basic notification for wearables
	Specifying the form factors
	Adding and customizing a blank activity
	Adding dependencies to Gradle scripts

	Creating a custom notification for wearables
	Receiving voice input within a notification
	Receiving multiple notifications through a process called page stacking
	Summary

	Chapter 3: Creating, Debugging, and Packaging Wearable Apps
	Creating an Android wearable watch
face app
	Presenting information inside the WatchFace class
	Creating a custom watch face service class
	Debug your Android wearable app over Bluetooth
	Running apps directly on an Android Wear device
	The Android wearable user interface guidelines
	Packaging your Android wearable application
	Summary

	Chapter 4: Sending and Syncing Data
	Creating a wearable send and receive application
	Creating a UI for the mobile activity
	Creating a UI for the wear activity
	Establishing connections for the
mobile activity
	Sending messages to the Android wearable
	Receiving messages using MessageAPI
	Transferring image data to the Android wearable
	Receiving image data using DataApi
	Summary

	Chapter 5: Working with Google Glass
	Installing the Glass Development Kit preview
	Installing the Google USB drivers for Windows
	Creating and building a Google Glass application
	Setting the theme for the Google Glass app
	Configuring the project to run on Google Glass
	Creating the custom menu resource file
	Configuring the AndroidManifests file
	Creating the custom camera layout
resource file
	Incorporating a voice input within
Google Glass
	Accessing camera through Google Glass
	Incorporating the Google Maps API with Google Glass
	Modifying the Google Glass main activity UI

	Launching the app within Google Glass
	An introduction to GDK and the Google Mirror API
	The Mirror API playground

	The Google Glassware principle design guidelines
	Summary

	Chapter 6: Designing and Customizing Interfaces for Android TV
	Creating and building an Android TV application
	Customizing the Android TV user interface
	Creating the CustomHeadersFragment class
	Creating the CustomRowsFragment class
	Creating the CustomFrameLayout class
	Creating the SearchActivity class
	Creating the SearchFragment class
	Creating the custom activity layout
resource file

	The Android TV user interface
design guidelines
	Summary

	Index

